Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (11): 3153-3172.doi: 10.16285/j.rsm.2024.0778

• Fundamental Theory and Experimental Research •     Next Articles

Some issues and research progress in rock and soil mechanics for deep space exploration missions

PAN Peng-zhi1, 2, WANG Zhao-feng1, 2, FENG Yu-jie1, 2, LI Yu-xin1, 2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100043, China
  • Received:2024-06-20 Accepted:2024-07-04 Online:2024-11-11 Published:2024-11-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52125903).

Abstract: As terrestrial resources and energy become increasingly scarce and advancements in deep space exploration technology progress, numerous countries have initiated plans for deep space missions targeting celestial bodies such as the Moon, Mars, and asteroids. Securing a leading position in deep space exploration technology is critical, and ensuring the successful completion of these missions is of paramount importance. This paper reviews the timelines, objectives, and associated geotechnical and engineering challenges of recent deep space exploration missions from various countries. Extraterrestrial geotechnical materials exist in unique environments characterized by special gravity, temperature, radiation, and atmospheric conditions, and are subject to disturbances such as meteoroid impacts. These factors contribute to significant differences from terrestrial geotechnical materials. Based on a thorough literature review, this paper investigates the transformation of geomechanical properties of extraterrestrial geological materials due to the distinctive environmental conditions, referred to as the "four unique characteristics and one disturbance", and their distinct formation processes. Considering current deep space mission plans, the paper summarizes the geotechnical challenges and research advancements addressing specific mission requirements. These include unmanned exploration and in-situ mechanical testing, construction of extreme environment test platforms, the mechanical properties of geotechnical materials under extreme conditions, the interaction between engineering equipment and geotechnical materials, and the in-situ utilization of extraterrestrial geotechnical resources. The goal is to support the successful execution of China’s deep space exploration missions and to promote the development of geomechanics towards extraterrestrial geomechanics.

Key words: deep space exploration, extraterrestrial geomechanics, extraterrestrial sampling, resource utilization, engineering surveys

CLC Number: 

  • TU 443
[1] JIANG Hai-bo, LU Yan, LI Lin, ZHANG Jun, . Strength characteristics and damage evolution law of expansive soil in water conveyance channel under dry-wet and freeze-thaw action [J]. Rock and Soil Mechanics, 2025, 46(5): 1356-1367.
[2] ZHOU Zhen-hua, KONG Ling-wei, LI Tian-guo, SHU Rong-jun, . Environmental effect and characterization of crack evolution in undisturbed expansive soils [J]. Rock and Soil Mechanics, 2025, 46(2): 402-412.
[3] WANG Ying, LIU Jia-yi, GAO Meng, KONG Xiang-xiao, . Experiment on dynamic characteristics of deep-sea gas-bearing energy soil under seismic loading [J]. Rock and Soil Mechanics, 2025, 46(2): 457-466.
[4] CHEN Yi-kun, CHU Ya, CAI Guo-jun, YAN Chao, LIU Song-yu, HAN Ai-min, . Evaluation on swelling index of expansive soil based on low frequency electrical method [J]. Rock and Soil Mechanics, 2025, 46(1): 147-155.
[5] HE Zheng, XIE Mo-wen, WU Zhi-xiang, ZHAO Chen, SUN Guang-cun, XU Le, . Field measurement study on the pre-collapse inclination deformation characteristics of tension-cracking slope rock mass using micro-core-pile sensor [J]. Rock and Soil Mechanics, 2024, 45(11): 3399-3415.
[6] HU Jiang, LI Xing, . Analysis of spatiotemporal deformation characteristics of deep excavated expansive soil slopes [J]. Rock and Soil Mechanics, 2024, 45(10): 3071-3080.
[7] CHEN Bao, XIANG Ping, DENG Rong-sheng。. Diffusion modeling of bentonite colloids in fractures of repository surrounding rocks [J]. Rock and Soil Mechanics, 2024, 45(2): 433-442.
[8] PENG Hai-you, XIE Qiang, CHEN Bo-lin, TAN Kang, WANG Qi, YANG Wen-jun, . Three-dimensional calculation method for stability against overturning of overhanging rock based on limit equilibrium method [J]. Rock and Soil Mechanics, 2024, 45(2): 552-562.
[9] LIU Feng-yun, LUO Huai-rui, WAN Xu-sheng, LU Jian-guo. Study on mechanical properties and curing mechanism of metakaolin based geopolymer solidified soil activated by calcium carbide slag under low temperature curing [J]. Rock and Soil Mechanics, 2023, 44(11): 3151-3164.
[10] WANG Ming-yuan, SUN Ji-zhu, WANG Yong, YANG Yang, . The state-dependent bounding surface model calibration based on CPTu data [J]. Rock and Soil Mechanics, 2023, 44(11): 3280-3287.
[11] ZENG Zhao-tian, CUI Zhe-qi, SUN De-an, YAO Zhi, PAN Bin, . Temperature effect on water retention capacity of Nanning expansive soil and its microscopic mechanism [J]. Rock and Soil Mechanics, 2023, 44(8): 2177-2185.
[12] GAO Hao-dong, AN Ran, KONG Ling-wei, ZHANG Xian-wei, LEI Xue-wen, . Evolution characteristics of meso-cracks in expansive soil under desiccating conditions [J]. Rock and Soil Mechanics, 2023, 44(2): 442-450.
[13] TONG Yan-mei, ZHANG Hu-yuan, ZHOU Guang-ping, LI Xiao-ya, . Mineralogical evidence of alkaline corrosion of montmorillonite in GMZ bentonite [J]. Rock and Soil Mechanics, 2022, 43(11): 2973-2982.
[14] GAO Huan, ZHAI Yue, WANG Tie-nan, LI Yu-bai, WANG Ming, LI Yan, . Compressive mechanical properties and strength prediction model of concrete-granite combined body under active confining pressure [J]. Rock and Soil Mechanics, 2022, 43(11): 2983-2992.
[15] CHAI Shao-bo, SONG Lang, LIU Huan, ABI Erdi, CHAI Lian-zeng, . Experimental study on deterioration characteristics of filled jointed rock under dry-wet cycles in acidic environment [J]. Rock and Soil Mechanics, 2022, 43(11): 2993-3002.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!