›› 2007, Vol. 28 ›› Issue (6): 1133-1138.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Practical method for settlement calculation of flexible columns composite foundation under embankment

ZHANG Ding-wen, LIU Song-yu   

  1. Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China
  • Received:2005-08-30 Online:2007-06-11 Published:2013-09-13

Abstract: The traditional calculating method of composite modulus is based on the assumption of the displacement compatibility between the flexible columns and the surrounding soil. However, case histories of embankment on ground improved by flexible columns revealed that the magnitude of the settlement of surrounding soil is often larger than that of flexible columns. The traditional composite modulus method may under-estimate the settlement of composite foundation under embankment. A two dimension finite element method (FEM) is adopted to capture the displacement incompatibility between the flexible columns and the surrounding soil under embankment and to investigate the factors influencing the settlement of composite foundation. The composite modulus of reinforced zone is back-analyzed by the layer-wise summation method. Comparison of the deformation of substratum before and after flexible columns installation yields the modified calculating method for settlement of substratum. Hence, the FEM is related with the layer-wise summation method. A practical calculating method of settlement of reinforced zone and substratum is put forward, respectively. A case study is also presented for verifying the validity of the proposed method.

Key words: flexible columns, composite foundation, composite modulus, embankment, settlement, finite element method (FEM)

CLC Number: 

  • TU 472.3
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[2] ZHANG Zhi-guo, ZHANG Rui, HUANG Mao-song, GONG Jian-fei, . Optimization analysis of pile group foundation based on differential settlement control and axial stiffness under vertical loads [J]. Rock and Soil Mechanics, 2019, 40(6): 2354-2368.
[3] TANG Xiao-wu, YANG Xiao-qiu, YU Yue. Analytical solutions to drained consolidation of porous pipe pile [J]. Rock and Soil Mechanics, 2019, 40(4): 1248-1254.
[4] FU Hong-yuan, LIU Jie, ZENG Ling, BIAN Han-bing, SHI Zhen-ning, . Deformation and strength tests of pre-disintegrating carbonaceous mudstone under loading and soaking condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1273-1280.
[5] YIN Feng, ZHOU Hang, LIU Han-long, CHU Jian, . Experimental investigation on dynamic characteristics of XCC pile-geogrid composite foundation under static and dynamic loads of vehicles [J]. Rock and Soil Mechanics, 2019, 40(4): 1324-1330.
[6] LIU Nian-wu, CHEN Yi-tian, GONG Xiao-nan, YU Ji-tao, . Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil [J]. Rock and Soil Mechanics, 2019, 40(4): 1515-1525.
[7] LIU Cheng-yu, ZHANG Xiang, CHENG Kai, CHEN Bo-wen, . Experimental study of settlement caused by water and sand inrush in underground engineering [J]. Rock and Soil Mechanics, 2019, 40(3): 843-851.
[8] TAN Guo-hong, XIAO Hai-zhu, DU Xun, HU Wen-jun. Settlement analysis of caisson foundation under main tower of a long span cable-stayed bridge for highway and railway [J]. Rock and Soil Mechanics, 2019, 40(3): 1113-1120.
[9] RUI Rui, SUN Yi, ZHU Yong, WU Duan-zheng, XIA Yuan-you, . Mesoscopic working mechanism of cushion of composite foundation under rigid slab [J]. Rock and Soil Mechanics, 2019, 40(2): 445-454.
[10] XU Peng, JIANG Guan-lu, REN Shi-jie, TIAN Hong-cheng, WANG Zhi-meng, . Experimental study of dynamic response of subgrade with red mudstone and improved red mudstone [J]. Rock and Soil Mechanics, 2019, 40(2): 678-683.
[11] ZHENG Dong, HUANG Jin-song, LI Dian-qing, . An approach for predicting embankment settlement by integrating multi-source information [J]. Rock and Soil Mechanics, 2019, 40(2): 709-719.
[12] ZHONG Guo-qiang, WANG Hao, LI Li, WANG Cheng-tang, XIE Bi-ting, . Prediction of maximum settlement of foundation pit based on SFLA-GRNN model [J]. Rock and Soil Mechanics, 2019, 40(2): 792-798.
[13] FEI Kang, DAI Di, HONG Wei, . A simplified method for working performance analysis of single energy piles [J]. Rock and Soil Mechanics, 2019, 40(1): 70-80.
[14] WANG Jian-jun, CHEN Fu-quan, LI Da-yong. A simple solution of settlement for low reinforced embankments on Kerr foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 250-259.
[15] DU Wei-fei, ZHENG Jian-guo, LIU Zheng-hong, ZHANG Ji-wen, YU Yong-tang, . Settlement behavior of high loess-filled foundation and impact from exhaust conditions [J]. Rock and Soil Mechanics, 2019, 40(1): 325-331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MA Kang, XU Jin, WU Sai-gang, ZHANG Ai-hui. Research on surrounding rock stability in local collapse section of highway tunnels[J]. , 2009, 30(10): 2955 -2960 .
[2] XIE Xing-hua, WANG Guo-qing. A study of anti-seepage wall depth in thick overburden dam base[J]. , 2009, 30(9): 2708 -2712 .
[3] SONG Jing,WANG Qing,SUN Tie,LI Xiao-ru,ZHANG Zhong-qiong,JIAO Zhi-liang. Laboratory research on variation mechanism of pore water pressure during stage of dead-weight sludging drainage of dredger fill[J]. , 2010, 31(9): 2935 -2940 .
[4] WANG Xue-liang, ZHANG Lu-qing, ZHANG Zhong-jian, FU Yan, LIU En-co. Effects of deformation and failure of rock pillar No.3-2 of Longyou grottos on stress change of grotto No.3[J]. , 2010, 31(12): 3919 -3927 .
[5] CHEN Zheng-han, FANG Xiang-wei, ZHU Yuan-qing, QIN Bing, WEI Xue-wen. Research on meso-structures and their evolution laws of expansive soil and loess[J]. , 2009, 30(1): 1 -11 .
[6] KONG Gang-qiang, YANG Qing, NIAN Ting-kai, HU Qing-chun. Study of characteristics of compression capacity and negative skin friction for belled wedge pile[J]. , 2011, 32(2): 503 -509 .
[7] HU Yun-shi, SU Hui, CHENG Yi-chong, AI Zhi-yong. State space solution to three-dimensional consolidation of layered rock with compressible constituents[J]. , 2011, 32(S1): 176 -180 .
[8] ZHENG Jie-wen , JIA Yong-gang , LIU Xiao-lei , SHAN Hong-xian , YANG Zhong-nian ,. Discrepancy of sediment erodibility variation under waves at Yellow River delta[J]. , 2011, 32(S1): 290 -0296 .
[9] ZHANG Hong , ZHENG Ying-ren , YANG Zhen , WANG Qian-yuan , GE Su-ming. Exploration of design methods of support structure in loess tunnel[J]. , 2009, 30(S2): 473 -478 .
[10] QI Wei , WANG Yong-zhi , JIANG Fu-wei. Determination of mechanical parameters of rock mass at a high arch dam on Yellow River[J]. , 2011, 32(S2): 478 -483 .