›› 2018, Vol. 39 ›› Issue (1): 173-180.doi: 10.16285/j.rsm.2016.0056

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

The unity of three types of slope failure criteria

TU Yi-liang1, 2,3, LIU Xin-rong1, 3, ZHONG Zu-liang1, 3, DU Li-bing1, 3, WANG Peng1, 3   

  1. 1. College of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 3. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400030, China
  • Received:2016-01-06 Online:2018-01-10 Published:2018-06-06
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51108485, 41372356) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20110191120033).

Abstract: The energy mechanism of material damage in thermodynamic theory was introduced to slope engineering. An energy conservation equation that was applicable in strength reduction period was deduced. Then, a calculation procedure for the slope energy was developed with FLAC3D, which was applied to a traditional slope example. Compared with the result from Spencer method, the slope’s energy change was closely related to its stability in the strength reduction method, hence four new slope failure criteria-energy catastrophe criteria which were theoretically in unity were proposed. By comparison, the criterion of the kinetic energy catastrophe is in correspondence with the criteria of numerical calculation non-convergence, the loss of gravitational potential energy catastrophe is in correspondence with the criteria of dramatic increase in the marked nodal displacements, and the dissipated energy catastrophe is in correspondence with the criteria of a plastic zone going through the slope. In summary, the aforementioned correspondences demonstrate the unity of the three common failure criteria. Several examples demonstrate that the different results from the three common failure criteria are because of artificial factors such as mesh generation precision and numerical convergence criteria. In essence, the different results stem from the fact that numerical calculation is a kind of approximate solution. In application, the accuracy of safety factor can be evaluated by the consistency of the results from various slope failure criteria. The better the consistency is, the higher the accuracy is. The basic method of improving the accuracy of safety factor is strict convergence standard and fine mesh precision, but achieving strict convergence standard and fine mesh precision may require extremely long numerical calculation time. Therefore, a moderate numerical calculation time should be chosen to maximize the computational efficiency.

Key words: slope, strength reduction finite element method, failure criterion, energy, unity

CLC Number: 

  • TU 434

[1] LI Ren-rong, KONG Gang-qiang, YANG Qing, SUN Guang-chao. Study on influence of flow velocity on heat transfer efficiency and thermal coupling characteristics of energy piles in pile-raft foundation [J]. Rock and Soil Mechanics, 2020, 41(S1): 264-270.
[2] ZHAO Jiu-bin, LIU Yuan-xue, HE Shao-qi, YANG Jun-tang, BAI Zhun, . Mathematical statistical model of horizontal displacement and rainfall of step deformation landslide in Three Gorges reservoir area [J]. Rock and Soil Mechanics, 2020, 41(S1): 305-311.
[3] WANG Jin-an, ZHOU Jia-xing, LI Fei . Study on temporal and spatial evolution law of landslide and mechanical response of overburden pipe [J]. Rock and Soil Mechanics, 2020, 41(7): 2155-2167.
[4] DUAN Jun-yi, YANG Guo-lin, HU Min, QIU Ming-ming, YU Yun, . Experimental study on deformation characteristics of reinforced soil cushion subjected to loading and unloading [J]. Rock and Soil Mechanics, 2020, 41(7): 2333-2341.
[5] JIANG Chang-bao, WEI Cai, DUAN Min-ke, CHEN Yu-fei, YU Tang, LI Zheng-ke, . Hysteresis effect and damping characteristics of shale under saturated and natural state [J]. Rock and Soil Mechanics, 2020, 41(6): 1799-1808.
[6] XIAO Shi-guo, LIU Hang, YU Xin-zuo. Analysis method of seismic overall stability of soil slopes retained by gravity walls anchored horizontally with flexible reinforcements [J]. Rock and Soil Mechanics, 2020, 41(6): 1836-1844.
[7] CHEN Guang-bo, QIN Zhong-cheng, ZHAN Guo-hua, LI Tan, LI Jing-kai, . Law of energy distribution before failure of a loaded coal-rock combined body [J]. Rock and Soil Mechanics, 2020, 41(6): 2021-2033.
[8] RONG Chi, CHEN Wei-zhong, YUAN Jing-qiang, ZHANG Zheng, ZHANG Yi, ZHANG Qing-yan, LIU Qi, . Study on new sodium silicate-ester grouting material and its properties of grouted-sand [J]. Rock and Soil Mechanics, 2020, 41(6): 2034-2042.
[9] HU Sheng-bin, DU Guo-ping, XU Guo-yuan, ZHOU Tian-zhong, ZHONG You-xin, SHI Chong-qing, . Sonar seepage vector method based on energy measurement and its application [J]. Rock and Soil Mechanics, 2020, 41(6): 2143-2154.
[10] ZHANG Ming-li, WEN Zhi, DONG Jian-hua, WANG De-kai, YUE Guo-dong, WANG Bin, GAO Qiang. Response of hydrothermal activity in different types of soil at ground surface to rainfall in permafrost region [J]. Rock and Soil Mechanics, 2020, 41(5): 1549-1559.
[11] REN Yang, LI Tian-bin, LAI Lin. Centrifugal shaking table test on dynamic response characteristics of tunnel entrance slope in strong earthquake area [J]. Rock and Soil Mechanics, 2020, 41(5): 1605-1612.
[12] ZHANG Lu-ming, ZHOU Yong, FAN Gang, CAI Hong-yu, DONG Yun. Seismic behavior research and reinforcement effect evaluation of composite retaining structures with nuclear safety level anti-dip layered soft rock slope under strong earthquakes [J]. Rock and Soil Mechanics, 2020, 41(5): 1740-1749.
[13] JIAN Wen-bin, HUANG Cong-hui, LUO Yang-hua, NIE Wen. Experimental study on wetting front migration induced by rainfall infiltration in unsaturated eluvial and residual soil [J]. Rock and Soil Mechanics, 2020, 41(4): 1123-1133.
[14] HAN Chao, PANG De-peng, LI De-jian. Analysis of energy evolution during the step loading and unloading creep experiments of sandstone [J]. Rock and Soil Mechanics, 2020, 41(4): 1179-1188.
[15] WANG Qing-yuan, LIU Jie, WANG Pei-tao, LIU Fei, . 冲击扰动诱发蠕变岩石加速失稳破坏试验 [J]. Rock and Soil Mechanics, 2020, 41(3): 781-788.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!