›› 2018, Vol. 39 ›› Issue (1): 339-348.doi: 10.16285/j.rsm.2016.0079

• Numerical Analysis • Previous Articles     Next Articles

Distinct element analysis of plane strain test on soil unloading around a foundation pit

ZHANG Fu-guang1, 2, 3, 4, JIANG Ming-jing3, 4   

  1. 1. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 2. Key Laboratory of Roads and Railway Engineering Safety Control of Ministry of Education, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 3. Key Laboratory of Geotechnical & Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 4. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2016-01-10 Online:2018-01-10 Published:2018-06-06
  • Supported by:

    This work was supported by the Key Program of the National Natural Science Foundation of China (51639008) and the National Natural Science Foundation of China (51579178).

Abstract: To investigate the influence of structure properties of soil and unloading form on macro- and micro- mechanical behaviors of soil around a foundation pit, a series of plane strain simulation tests were conducted on the soil within the region affected by pit excavation using three-dimensional (3-D) distinct element method. First, a simple 3-D bond contact model, representing inter-particle bonding effect, was implemented into 3-D distinct element analysis code PFC3D. After that, conventional triaxial and plane strain tests on remolded and structured soil were simulated under four stress paths. Finally, the reloading process was simulated on the bottom soil element after unloading. The results show that the peak strength of the soil in passive region and the vertical strain corresponding to failure during unloading increase with unloading ratio, and the strength is smaller than that of the soil in active region. During reloading, the peak strength of the soil in passive region increases with unloading ratio, and is smaller than that without unloading or immediate loading. In addition, volume changes are significantly influenced by structure effect and unloading form. On the microscopic scale, increase in unloading ratio and enhancement in structure degree will increase the normal contact forces in a plane perpendicular to the direction of the maximum principal stress and thus enhance the strength of the soil.

Key words: pit excavation, plane strain test, unloading, distinct element method

CLC Number: 

  • TU 470

[1] XU Ri-qing, CHENG Kang, YING Hong-wei, LIN Cun-gang, LIANG Rong-zhu, FENG Su-yang, . Deformation response of a tunnel under foundation pit unloading considering buried depth and shearing effect [J]. Rock and Soil Mechanics, 2020, 41(S1): 195-207.
[2] BIAN Kang, CHEN Yan-an, LIU Jian, CUI De-shan, LI Yi-ran, LIANG Wen-di, HAN Xiao. The unloading failure characteristics of shale under different water absorption time using the PFC numerical method [J]. Rock and Soil Mechanics, 2020, 41(S1): 355-367.
[3] TONG Xing, YUAN Jing, JIANG Ye-xiang, LIU Xing-wang, LI Ying, . Calculation of layered unloading additional stress of foundation pit based on Mindlin solution and the analysis of multiple factors influencing the rebound deformation [J]. Rock and Soil Mechanics, 2020, 41(7): 2432-2440.
[4] YAO Hong-bo, LI Bing-he, TONG Lei, LIU Xing-wang, CHEN Wei-lin. Analysis of metro tunnel deformation by upper excavation unloading considering spatial effect in soft soil [J]. Rock and Soil Mechanics, 2020, 41(7): 2453-2460.
[5] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[6] HOU Gong-yu, JING Hao-yong, LIANG Jin-ping, TAN Jin-xin, ZHANG Yong-kang, YANG Xi, XIE Xin, . Experimental study on surrounding rock deformation and acoustic emission characteristics of rectangular roadway under different loads [J]. Rock and Soil Mechanics, 2020, 41(6): 1818-1828.
[7] HOU Zhi-qiang, WANG Yu, LIU Dong-qiao, LI Chang-hong, LIU Hao. Experimental study of mechanical properties of marble under triaxial unloading confining pressure after fatigue loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1510-1520.
[8] ZHAO Jun, GUO Guang-tao, XU Ding-ping, HUANG Xiang, HU Cai, XIA Yue-lin, ZHANG Di. Experimental study of deformation and failure characteristics of deeply-buried hard rock under triaxial and cyclic loading and unloading stress paths [J]. Rock and Soil Mechanics, 2020, 41(5): 1521-1530.
[9] SHI Xu-chao, SUN Yun-de. Analysis of the evolution of excess pore water pressure in soft soil under linear unloading [J]. Rock and Soil Mechanics, 2020, 41(4): 1333-1338.
[10] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[11] REN Qing-yang, ZHANG Huang-mei, LIU Jia-shen, . Rheological properties of mudstone under two unloading paths in experiments [J]. Rock and Soil Mechanics, 2019, 40(S1): 127-134.
[12] ZHAI Ming-lei, GUO Bao-hua, WANG Chen-lin, JIAO Feng, . Compression-shear failure characteristics of rock with penetrated fracture under normal unloading condition [J]. Rock and Soil Mechanics, 2019, 40(S1): 217-223.
[13] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
[14] HOU Gong-yu, JING Hao-yong, LIANG Jin-ping, ZHANG Guang-dong, TAN Jin-xin, ZHANG Yong-kang, YANG Xi, . Experimental study of deformation and acoustic emission characteristics of rectangular roadway under different unloading rates [J]. Rock and Soil Mechanics, 2019, 40(9): 3309-3318.
[15] LI Jing-jing, KONG Ling-wei, . Creep properties of expansive soil under unloading stress and its nonlinear constitutive model [J]. Rock and Soil Mechanics, 2019, 40(9): 3465-3475.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!