›› 2018, Vol. 39 ›› Issue (4): 1153-1158.doi: 10.16285/j.rsm.2016.0794

• Fundamental Theroy and Experimental Research •     Next Articles

An elasto-plastic constitutive model for methane hydrate bearing sediments

JIANG Ming-jing1, 2, 3, LIU Jun1, 2, 3, ZHOU Wei1, 2, 3, XI Bang-lu1, 2, 3   

  1. 1. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 3. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2016-04-14 Online:2018-04-11 Published:2018-06-06
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51579178) and the State Key Laboratory Disaster Reduction in Civil Engineering (SLDRCE14-A-04).

Abstract: Methane hydrate (MH) is usually formed in marine deposit under specific temperature and pressure conditions. MH can enhance the shear strength of its bearing sediments due to bonding effect. Based on the framework of damage mechanics, the structured sand constitutive model is employed to simulate the mechanical behavior of methane hydrate bearing sediments. By simulating the consolidated drained triaxial compression tests, a quantitative relationship between the initial yield parameter and the methane hydrate saturation is developed according to the stress-strain relationship. The primary damage law is modified to develop an elasto-plastic constitutive model for methane hydrate bearing sediments. Furthermore, another set of triaxial tests and isotropic compression test on methane hydrate bearing sediments are simulated by the established model. Results show that this elasto-plastic constitutive model can effectively describe the relationship between the mechanical behavior of methane hydrate bearing sediments and the methane hydrate saturation. When methane hydrate saturation increases, the peak shear stress and the secant modulus increase in the triaxial tests, and the yielding stress under isotropic path increases along isotropic compression path.

Key words: methane hydrate bearing sediments, constitutive model, saturation of hydrate

CLC Number: 

  • TU 43

[1] MENG Qing-bin, WANG Jie, HAN Li-jun, SUN Wen, QIAO Wei-guo, WANG Gang, . Physical and mechanical properties and constitutive model of very weakly cemented rock [J]. Rock and Soil Mechanics, 2020, 41(S1): 19-29.
[2] WANG Xiang-nan, HAO Qing-shuo, YU Jia-lin, YU Yu-zhen, LÜ He, . Three-dimensional simulation of the separation of dam panel based on extended finite element method [J]. Rock and Soil Mechanics, 2020, 41(S1): 329-336.
[3] GAO Wei, HU Cheng-jie, HE Tian-yang, CHEN Xin, ZHOU Cong, CUI Shuang, . Study on constitutive model of fractured rock mass based on statistical strength theory [J]. Rock and Soil Mechanics, 2020, 41(7): 2179-2188.
[4] ZHU Jian-feng, XU Ri-qing, LUO Zhan-you, PAN Bin-jie, RAO Chun-yi, . A nonlinear constitutive model for soft clay stabilized by magnesia cement considering the effect of solidified agent content [J]. Rock and Soil Mechanics, 2020, 41(7): 2224-2232.
[5] JIN Qing, WANG Yi-lin, CUI Xin-zhuang, WANG Cheng-jun, ZHANG Ke, LIU Zheng-yin, . Deformation behaviour of geobelt in weathered rock material-tire shred lightweight soil under pullout condition [J]. Rock and Soil Mechanics, 2020, 41(2): 408-418.
[6] DENG Zi-qian, CHEN Jia-shuai, WANG Jian-wei, LIU Xiao-wen, . Constitutive model and experimental study of uniform yield surface based on SFG model [J]. Rock and Soil Mechanics, 2020, 41(2): 527-534.
[7] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[8] HE Peng-fei, MA Wei, MU Yan-hu, HUANG Yong-ting, DONG Jian-hua, . Experimental analysis of interfacial shear behavior of loess-mortar block and construction of constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 82-90.
[9] LIU Si-hong, SHEN Chao-min, MAO Hang-yu, SUN Yi. State-dependent elastoplastic constitutive model for rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2891-2898.
[10] ZHANG Chao, YANG Qi-jun, CAO Wen-gui, . Study of damage constitutive model of brittle rock considering post-peak stress dropping rate [J]. Rock and Soil Mechanics, 2019, 40(8): 3099-3106.
[11] ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, TANG Xin-jun, . A static and dynamic constitutive model of rockfill material considering particle breakage [J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554.
[12] WANG Zhen, ZHU Zhen-de, CHEN Hui-guan, ZHU Shu, . A thermo-hydro-mechanical coupled constitutive model for rocks under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(7): 2608-2616.
[13] WANG Jun-min, XIONG Yong-lin, YANG Qi-lai, SANG Qin-yang, HUANG Qiang. Study of the dynamic elastoplastic constitutive model for unsaturated soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2323-2331.
[14] WANG Jie, SONG Wei-dong, TAN Yu-ye, FU Jian-xin, CAO Shuai, . Damage constitutive model and strength criterion of horizontal stratified cemented backfill [J]. Rock and Soil Mechanics, 2019, 40(5): 1731-1739.
[15] SUN Yi-fei, CHEN Cheng, . A state-dependent stress-dilatancy equation without state index and its associated constitutive model [J]. Rock and Soil Mechanics, 2019, 40(5): 1813-1822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!