›› 2018, Vol. 39 ›› Issue (4): 1469-1478.doi: 10.16285/j.rsm.2016.1062

• Numerical Analysis • Previous Articles     Next Articles

Probability distribution of shear strength parameters using maximum entropy principle for slope reliability analysis

CHEN Wang-wang1, 2, LI Dian-qing1, 2, TANG Xiao-song1, 2, CAO Zi-jun1, 2   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China; 2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
  • Received:2016-05-11 Online:2018-04-11 Published:2018-06-06
  • Supported by:

    This work was supported by the National Key R&D Program of China (2017YFC1501301) and the National Natural Science Foundation of China (51509188,51579190,51779189).

Abstract: This paper proposes a new method for modeling the probability distributions of shear strength parameters using maximum entropy principle (MEP). First, the procedure for constructing the probability density functions (PDFs) of shear strength parameters using MEP is presented. Then, Monte Carlo simulations are conducted to validate MEP for modeling the PDFs of shear strength parameters and probability of slope failure. Moreover, the accuracy and robustness of MEP, Akaike Information Criterion (AIC) and kernel density estimation (KDE) are compared. Finally, a dataset of shear strength parameters for residual soil is compiled, and an infinite slope is adopted to demonstrate the application of MEP to the estimation of the probability distributions of shear strength parameters and probability of slope failure. The results indicate that with limited shear strength data, MEP can effectively model the PDFs of shear strength parameters and probability of slope failure. In comparison with AIC and KDE, MEP produces more accurate and robust results for the PDFs of shear strength parameters and probability of slope failure. MEP not only avoids relying too much on the limited shear strength data in KDE, but also overcomes the possibility of excluding the true probability distribution in the set of candidate probability distributions in AIC. Furthermore, there are significant variations in the probability distributions of shear strength parameters and probability of slope failure estimated from limited data.

Key words: slope, reliability, shear strength parameters, probability distribution, maximum entropy principle

CLC Number: 

  • TU 434

[1] XIAO Shi-guo, LIU Hang, YU Xin-zuo. Analysis method of seismic overall stability of soil slopes retained by gravity walls anchored horizontally with flexible reinforcements [J]. Rock and Soil Mechanics, 2020, 41(6): 1836-1844.
[2] RONG Chi, CHEN Wei-zhong, YUAN Jing-qiang, ZHANG Zheng, ZHANG Yi, ZHANG Qing-yan, LIU Qi, . Study on new sodium silicate-ester grouting material and its properties of grouted-sand [J]. Rock and Soil Mechanics, 2020, 41(6): 2034-2042.
[3] ZHOU Qiang, LI Kang-ping, DUAN Ya-hui, CAO Zi-jun, LI Dian-qing, . Safety criteria for bearing capacity of foundation based on the generalized reliability ratio of safety margin [J]. Rock and Soil Mechanics, 2020, 41(6): 2052-2062.
[4] WU Xing-zheng, WANG Rui-kai, XIN Jun-xia, . Geometric reliability analysis of geotechnical structures at a specific site [J]. Rock and Soil Mechanics, 2020, 41(6): 2070-2080.
[5] REN Yang, LI Tian-bin, LAI Lin. Centrifugal shaking table test on dynamic response characteristics of tunnel entrance slope in strong earthquake area [J]. Rock and Soil Mechanics, 2020, 41(5): 1605-1612.
[6] ZHANG Lu-ming, ZHOU Yong, FAN Gang, CAI Hong-yu, DONG Yun. Seismic behavior research and reinforcement effect evaluation of composite retaining structures with nuclear safety level anti-dip layered soft rock slope under strong earthquakes [J]. Rock and Soil Mechanics, 2020, 41(5): 1740-1749.
[7] JIAN Wen-bin, HUANG Cong-hui, LUO Yang-hua, NIE Wen. Experimental study on wetting front migration induced by rainfall infiltration in unsaturated eluvial and residual soil [J]. Rock and Soil Mechanics, 2020, 41(4): 1123-1133.
[8] ZHOU Zi-han, CHEN Zhong-hui, WANG Jian-ming, ZHANG Ling-fan, NIAN Geng-qian. Catastrophe analysis of open-pit slope stability under blasting load [J]. Rock and Soil Mechanics, 2020, 41(3): 849-857.
[9] SHI Zhen-ning, QI Shuang-xing, FU Hong-yuan, ZENG Ling, HE Zhong-ming, FANG Rui-min, . A study of water content distribution and shallow stability of earth slopes subject to rainfall infiltration [J]. Rock and Soil Mechanics, 2020, 41(3): 980-988.
[10] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[11] ZHU Yan-peng, TAO Jun, YANG Xiao-hui, PENG Jun-guo, WU Qiang, . Design and numerical analyses of high-fill slope strengthened by frame with prestressed anchor-plates [J]. Rock and Soil Mechanics, 2020, 41(2): 612-623.
[12] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[13] JIANG Shui-hua, FENG Ze-wen, LIU Xian, JIANG Qing-hui, HUANG Jin-song, ZHOU Chuang-bing. Inference of probability distributions of geotechnical parameters using adaptive Bayesian updating approach [J]. Rock and Soil Mechanics, 2020, 41(1): 325-335.
[14] ZHU Lei, HUANG Run-qiu, CHEN Guo-qing, YAN Ming, . Mechanical model and evolution of fracture system with a gentle dip angle in rock slope [J]. Rock and Soil Mechanics, 2019, 40(S1): 53-62.
[15] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, ZHANG Zhi-hua, DAI Zhen-wei, . Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region [J]. Rock and Soil Mechanics, 2019, 40(S1): 329-340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!