›› 2018, Vol. 39 ›› Issue (6): 1935-1940.doi: 10.16285/j.rsm.2016.1644

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Comparison of dynamic properties between transparent sand and natural sand

KONG Gang-qiang1, LI Hui1, WANG Zhong-tao 2, WEN Lei1   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
  • Received:2016-07-07 Online:2018-06-11 Published:2018-07-03
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51478165).

Abstract: Synthetic transparent soil has been widely used to support technology of geotechnical visualization. However, the research on its dynamic properties is relative little, limiting its application in dynamic correlation model test. In this study, dynamic deformation and strength of transparent sand are examined by resonant column test and dynamic torsional shear test. The results are compared with those of the natural sand and Fujian standard sand. Transparent sand is manufactured by fused quartz and oil mixture with the same refraction index by Norpar? 12 and Drakeol? 15. The curves of dynamic shear modulus-strain, dynamic damping-strain, dynamic shear modulus-damping ratio, pore pressure, and dynamic strength are measured and analyzed. The dynamic properties of natural sand and Fujian standard sand are also shown for comparison. It is found that the transparent sand has similar dynamic behaviors as natural sand. Transparent sand shows a great potential as a substitute for natural sand, and it is expected to be widely used in dynamic model tests.

Key words: transparent soil, dynamic shear modulus, damping ratio, dynamic strength, resonant column test, dynamic torsional shear test

CLC Number: 

  • TU 435

[1] JIANG Chang-bao, WEI Cai, DUAN Min-ke, CHEN Yu-fei, YU Tang, LI Zheng-ke, . Hysteresis effect and damping characteristics of shale under saturated and natural state [J]. Rock and Soil Mechanics, 2020, 41(6): 1799-1808.
[2] SUN Jing, GONG Mao-sheng, XIONG Hong-qiang, GAN Lin-rui, . Experimental study of the effect of freeze-thaw cycles on dynamic characteristics of silty sand [J]. Rock and Soil Mechanics, 2020, 41(3): 747-754.
[3] LIANG Ke, HE Yang, CHEN Guo-xing, . Experimental study of dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Islands [J]. Rock and Soil Mechanics, 2020, 41(1): 23-31.
[4] RUI Sheng-jie, GUO Zhen, WANG Li-zhong, ZHOU Wen-jie, LI Yu-jie, . Experimental study of cyclic shear stiffness and damping ratio of carbonate sand-steel interface [J]. Rock and Soil Mechanics, 2020, 41(1): 78-86.
[5] ZHOU Dong, LIU Hang-long, ZHANG Wen-gang, DING Xuan-ming, YANG Chang-you, . Transparent soil model test on the displacement field of soil around single passive pile [J]. Rock and Soil Mechanics, 2019, 40(7): 2686-2694.
[6] LIANG Ke, CHEN Guo-xing, HE Yang, LIU Jing-ru, . An new method for calculation of dynamic modulus and damping ratio based on theory of correlation function [J]. Rock and Soil Mechanics, 2019, 40(4): 1368-1376.
[7] ZHOU Hang, YUAN Jing-rong, LIU Han-long, CHU Jian, . Model test of rectangular pile penetration effect in transparent soil [J]. Rock and Soil Mechanics, 2019, 40(11): 4429-4438.
[8] YANG Wen-bao, WU Qi, CHEN Guo-xing, . Dynamic shear modulus prediction method of undisturbed soil in the estuary of the Yangtze River [J]. Rock and Soil Mechanics, 2019, 40(10): 3889-3896.
[9] ZHUANG Xin-shan, WANG Jun-xiang, WANG Kang, LI Kai, HU Zhi. Experimental study on dynamic characteristics of expansive soil modified by weathered sand [J]. Rock and Soil Mechanics, 2018, 39(S2): 149-156.
[10] ZHANG Wei, LI Ya, ZHOU Song-wang, JIANG Zheng-bo, WU Fei, LIANG Wen-zhou,. Experimental research on cyclic behaviors of clay in the northern region of South China Sea [J]. , 2018, 39(7): 2413-2423.
[11] LIU Fei-yu, SHI Jing, WANG Jun, CAI Yuan-qiang,. Dynamic shear behavior of interface for clay reinforced with geogrid encapsulated in thin layers of sand [J]. , 2018, 39(6): 1991-1998.
[12] WANG Min-min, LU Qun, GUO Shao-long, GAO Meng, SHEN Zhong-tao,. Dynamic behavior of soil with fiber and cement under cyclic loading [J]. , 2018, 39(5): 1753-1760.
[13] WU Meng-tao, LIU Fang-cheng, CHEN Ju-long, CHEN Lu. Influence of water content on dynamic shear modulus and damping ratio of rubber-sand mixture under large strains [J]. , 2018, 39(3): 803-814.
[14] CHEN Shu-feng, KONG Ling-wei, LI Cheng-sheng, . Nonlinear characteristics of Poisson's ratio of silty clay under low amplitude strain [J]. , 2018, 39(2): 580-588.
[15] MA Lin-jian, YANG Fa, WANG Ming-yang, LI Zeng, . Generalized Hoek-Brown dynamic strength criterion incorporating strain rate effect [J]. , 2017, 38(S2): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!