›› 2018, Vol. 39 ›› Issue (6): 2017-2024.doi: 10.16285/j.rsm.2016.1924

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Influence of confining pressure unloading at post-peak on deformation and permeability characteristics of raw coal

LIU Chao1, 2, 3, ZHANG Dong-ming1, 2, 3, SHANG De-lei1, 2, 3, ZHAO Hong-gang 1, 2, 3, SONG Zhen-long1, 2, 3, YU Huan1, 2, 3   

  1. 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China; 2. College of Resources and Environmental Sciences, Chongqing University, Chongqing 400030, China; 3. State and Local Joint Engineering Laboratory of Methane Drainage in Complex Coal Gas Seam, Chongqing 400030, China
  • Received:2016-10-31 Online:2018-06-11 Published:2018-07-03
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51434003, 51374256).

Abstract: In this study, experiments were conducted on raw coal specimens by using the self-developed triaxial servo-controlled seepage equipment for thermo-hydro-mechanical coupling of coal containing methane. Experiments were carried out when the axial pressure maintained at different stress levels but the confining pressure was unloaded. We studied the effects of unloading confining pressure on deformation properties and permeability characteristics of gas-filled coal at the post-peak. The results showed that the damage variable was defined by the unrecoverable deformations of radial strain , axial strain and volumetric strain and the response of these three parameters during the process of unloading. The interval [0, 1] of damage variable was satisfied to calculate the damage quantity of coal specimen in the process of unloading. When the axial pressure remained constant and the confining pressure was unloaded, the amount of damage quantity D increased with the decrease of and the damage degree of coal specimen increased greatly. When unloading the axial pressure to different stress levels, the permeability of coal specimen increased with the growing unloading times of confining pressure. It indicated that the influence of confining pressure on permeability was more and more important when decreased. At the same time, the pores and fractures in the coal specimen were developed, expanded and extended. In addition, the permeability k hardly increased at the beginning of unloading . As continued to unload, k began to increase and the slope became growing, indicating the severe damage of coal specimen. The radius of Mohr stress circle was equivalent to an increase under this stress path of loading and unloading, and coal specimens tended to destruction causing the increasing possibility of the occurrence of secondary failure. At the higher level of , with the unloading of , the radius of Mohr stress circle increased and the supportability of coal specimens became weaker. Hence, the secondary failure easily occurred, which manifested the abrupt change of axial strain and radial strain .

Key words: confining pressure unloading, damage, damage variable expression, permeability, Mohr stress circle, secondary failure

CLC Number: 

  • TD 712

[1] WANG Ke, SHENG Jin-chang, GAO Hui-cai, TIAN Xiao-dan, ZHAN Mei-li, LUO Yu-long, . Study on seepage characteristics of rough crack under coupling of stress-seepage erosion [J]. Rock and Soil Mechanics, 2020, 41(S1): 30-40.
[2] ZHANG Yan-bo, WU Wen-rui, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, HUANG Yan-li, LIANG Jing-long, . Acoustic emission, infrared characteristics and damage evolution of granite under uniaxial compression [J]. Rock and Soil Mechanics, 2020, 41(S1): 139-146.
[3] GUI Yue, WU Cheng-kun, ZHAO Zhen-xing, LIU Sheng-jun, LIU Rui, ZHANG Qiu-min. Effects of microbial decomposition of organic matter on engineering properties of peat soil [J]. Rock and Soil Mechanics, 2020, 41(S1): 147-155.
[4] YE Yang, ZENG Ya wu, DU Xin, SUN Han qing, CHEN Xi, . Three-dimensional discrete element simulation of spherical gravel collision damag [J]. Rock and Soil Mechanics, 2020, 41(S1): 368-378.
[5] SHAO Chang-yue, PAN Peng-zhi, ZHAO De-cai, YAO Tian-bo, MIAO Shu-ting, YU Pei-yang, . Effect of pumping rate on hydraulic fracturing breakdown pressure and pressurization rate [J]. Rock and Soil Mechanics, 2020, 41(7): 2411-2421.
[6] YANG Yan-shuang, ZHOU Hui, MEI Song-hua, ZHANG Zhan-rong, LI Jin-lan. A case study of the excavation damage zone expansion time effect in hard brittle country rock under high geostress: characteristics and mechanism [J]. Rock and Soil Mechanics, 2020, 41(4): 1357-1365.
[7] LIU Hua, HE Jiang-tao, ZHAO Qian, WANG Tie-hang, GUO Chao-yi, . Experimental study on evolution of micro-permeability characteristics of acid-contaminated undisturbed loess [J]. Rock and Soil Mechanics, 2020, 41(3): 765-772.
[8] WANG Qing-yuan, LIU Jie, WANG Pei-tao, LIU Fei, . 冲击扰动诱发蠕变岩石加速失稳破坏试验 [J]. Rock and Soil Mechanics, 2020, 41(3): 781-788.
[9] LI Hua, LI Tong-lu, JIANG Rui-jun, FAN Jiang-wen. Measurement of unsaturated permeability curve using filter paper method [J]. Rock and Soil Mechanics, 2020, 41(3): 895-904.
[10] SHENG Jian-long, HAN Yun-fei, YE Zu-yang, CHENG Ai-ping, HUANG Shi-bing, . Relative permeability model for water-air two-phase flow in rough-walled fractures and numerical analysis [J]. Rock and Soil Mechanics, 2020, 41(3): 1048-1055.
[11] HOU Hui-ming, HU Da-wei, ZHOU Hui, LU Jing-jing, LÜ Tao, ZHANG Fan. Thermo-hydro-mechanical coupling numerical simulation method for high-level waste geological repository considering excavation damage [J]. Rock and Soil Mechanics, 2020, 41(3): 1056-1064.
[12] LI Kang, WANG Wei, YANG Dian-sen, CHEN Wei-zhong, QI Xian-yin , TAN Cai. Application of periodic oscillation method in low permeability measurement [J]. Rock and Soil Mechanics, 2020, 41(3): 1086-1094.
[13] CHEN Wei-zhong, LI Fan-fan, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study on creep characteristics of claystone under thermo-hydro-mechanical coupling [J]. Rock and Soil Mechanics, 2020, 41(2): 379-388.
[14] LI Hong-po, CHEN Zheng, FENG Jian-xue, MENG Yu-han, MEI Guo-xiong, . Study on position optimization of horizontal drainage sand blanket of double-layer foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 437-444.
[15] XU Jie, ZHOU Jian, LUO Ling-hui, YU Liang-gui, . Study on anisotropic permeability model for mixed kaolin-montmorillonite clays [J]. Rock and Soil Mechanics, 2020, 41(2): 469-476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!