Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (11): 3423-3434.doi: 10.16285/j.rsm.2023.1955

• Geotechnical Engineering • Previous Articles     Next Articles

Mechanical properties of root-soil composite in tree-covered landslide area based on field prototype test

LIN Yun-zhao1, 2, JIAN Wen-bin1, 2, LAI Zeng-rong1, 2, ZHONG Xin1, 2, ZHANG Jun-yi1, 2, XIA Chang3   

  1. 1. Institute of Geotechnical and Geological Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; 2. Geological Engineering Research Center of Fujian University, Fuzhou University, Fuzhou, Fujian 350108, China; 3. Fuzhou Planning Design and Research Institute, Fuzhou, Fujian 350108, China
  • Received:2023-12-30 Accepted:2024-02-19 Online:2024-11-11 Published:2024-11-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (U2005205, 41861134011) and the Natural Science Foundation of Fujian Province (2023J01423).

Abstract: In order to understand the mechanical characteristics of tree roots and their mechanical effects on slopes, the landslide in Wuping high vegetation coverage area of Fujian province was selected as the research site, and the root tensile mechanical properties of typical tree roots in the study area were tested after classification by diameter class. Furthermore, in-situ direct shear tests of root-soil composites under different root cross-sectional area ratios (RAR) and moisture content were conducted at the landslide site, and investigations were made into the distribution characteristics of roots in the profile to explore the mechanical effects of roots on shallow landslides. The results showed as follows: (1) The tensile force of Pinus massoniana and Cunninghamia lanceolata ranged from 12.45−673.09 N in 1−7 diameter class, and the tensile force was positively correlated with the root diameter by power function; The tensile strength ranges from 7.16 MPa to 60.95 MPa, and the tensile strength is negatively correlated with the root diameter as a power function. The average tensile force and tensile strength of Cunninghamia lanceolata root were higher than those of Pinus massoniana. (2) Tree roots significantly improved the shear strength of soil, and the additional cohesion provided by roots to soil was significantly positively correlated with the shear plane RAR. The root structure of Cunninghamia lanceolata is closer to R type, and that of Pinus massoniana is VH type. Under similar RAR, Cunninghamia lanceolata roots has a better reinforcing effect on the soil than Pinus massoniana. (3) With the increase in moisture content, the shear strength of the root-soil composites of Pinus massoniana and Cunninghamia lanceolata significantly decreases, as water infiltration diminishes the additional cohesion provided by the root systems to the soil. (4) Based on the Wu model, considering the influence of moisture content on soil cohesion and additional root cohesion, an estimation model for the shear strength value of root-soil composites considering moisture content was established. Upon verification, the accuracy of this model proved to be higher than that of the Wu model, and the results were reasonable. (5) Although the root system has a reinforcement effect on shallow landslides, its contribution to the stability of shallow landslides under heavy rainfall is limited due to the influence of root distribution depth, density and water infiltration.

Key words: tree root, tensile strength, in situ shear tests, root-soil composite, shallow landslide

CLC Number: 

  • TU 411
[1] LIAO Wen-wang, JI Jian, ZHANG Tong, WU Zhi-jun, ZHANG Jie, . Time-dependent hazard assessment of rainfall-induced shallow landslides considering the spatial variability of soil permeability [J]. Rock and Soil Mechanics, 2022, 43(S1): 623-632.
[2] TANG Lian-sheng, WANG Hao, SUN Yin-lei, LIU Qi-xin, . Change of tensile strength of granite residual soil during drying and wetting [J]. Rock and Soil Mechanics, 2022, 43(7): 1749-1760.
[3] WEI Li, CHAI Shou-xi, ZHANG Lin, LI Yao, . Compressive and tensile properties of three fiber-lime-soils under freeze-thaw cycle [J]. Rock and Soil Mechanics, 2022, 43(12): 3241-3248.
[4] JIANG Tong, ZHAI Tian-ya, ZHANG Jun-ran, ZHAO Jin-di, WANG Li-jin, SONG Chen-yu, PAN Xu-wei. Diametric splitting tests on loess based on particle image velocimetry technique [J]. Rock and Soil Mechanics, 2021, 42(8): 2120-2126.
[5] ZHANG Zhi-tao, CHEN Sheng-shui, JI En-yue, FU Zhong-zhi, . Tensile fracture properties of gravelly soil reinforced by polypropylene fiber [J]. Rock and Soil Mechanics, 2021, 42(10): 2713-2721.
[6] LI Er-qiang, ZHANG Hong-chang, ZHANG Long-fei, ZHU Tian-yu, LU Jing-gan, FENG Ji-li, . Investigation on Brazilian tests and simulations of carbonaceous slate with different bedding angles [J]. Rock and Soil Mechanics, 2020, 41(9): 2869-2879.
[7] ZHANG Mao-chu, SHENG Qian, CUI Zhen, MA Ya-li-na, ZHOU Guang-xin. Effect of loading rate on tensile strength of rock materials and morphology of fracture joint surface [J]. Rock and Soil Mechanics, 2020, 41(4): 1169-1178.
[8] LIU Jie, LI Yun-zhou , YANG Yu-nan, LI Hong-ya, SUN Tao, LI Zheng, . Study on the method for determining the limit content of expansion agent in anchor body of self-expanding bolt [J]. Rock and Soil Mechanics, 2020, 41(10): 3266-3278.
[9] WU Mei-su, ZHOU Cheng, WANG Lin, TAN Chang-ming, . Numerical simulation of the influence of roots and fissures on hydraulic and mechanical characteristics of the soil [J]. Rock and Soil Mechanics, 2019, 40(S1): 519-526.
[10] YANG Zong-ji, CAI Huan, LEI Xiao-qin, WANG Li-yong, DING Peng-peng, QIAO Jian-ping, . Experiment on hydro-mechanical behavior of unsaturated gravelly soil slope [J]. Rock and Soil Mechanics, 2019, 40(5): 1869-1880.
[11] WU Shun-chuan, MA Jun, CHENG Ye, CHENG Zi-qiao, LI Jian-yu, . Review of the flattened Brazilian test and research on the three dimensional crack initiation point [J]. Rock and Soil Mechanics, 2019, 40(4): 1239-1247.
[12] JI En-yue, CHEN Sheng-shui, FU Zhong-zhi, . Experimental investigations on tensile cracking mechanical characteristics of gravelly core material [J]. Rock and Soil Mechanics, 2019, 40(12): 4777-4782.
[13] ZHANG Long-fei, WU Yi-ping, MIAO Fa-sheng, LI Lin-wei, KANG Tian. Mechanical model and stability analysis of progressive failure for thrust-type gently inclined shallow landslide [J]. Rock and Soil Mechanics, 2019, 40(12): 4767-4776.
[14] GAO Gui-yun, WANG Cheng-hu, WANG Chun-quan,. Optimal size range study of rock specimen for double concentric annular core direct tensile test [J]. , 2018, 39(S1): 191-202.
[15] LIU Yue-dong, LIN Jian, FENG Yan-jun, SI Lin-po,. Research on tensile strength of rock based on hydraulic fracturing method [J]. , 2018, 39(5): 1781-1788.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!