›› 2009, Vol. 30 ›› Issue (12): 3808-3812.

• Geotechnical Engineering • Previous Articles     Next Articles

Application of Gudehus-Bauer hypoplastic model of core-wall type rockfill dams considering wetting behavior

CEN Wei-jun1, ERICH Bauer2, SENDY F. Tantono3   

  1. 1. College of Water Conservancy & Hydropower Engineering, Hohai University, Nanjing 210098, China; 2. Institute of Applied Mechanics, Graz University of Technology, Graz, 8010, Austria; 3.Petra Christian University, Surabaya, Indonesia
  • Received:2007-03-01 Online:2009-12-10 Published:2010-01-18

Abstract:

Based on the analysis of main characters of weathered rockfill materials, the deformation of rockfill due to a change of the moisture contents can be forecasted using an extended Gudehus-Bauer hypoplastic model. The updated model takes into account a moisture sensitive granular hardness; and it can reflect the influence of density, stress state, rate of deformation and moisture content on the nonlinear, inelastic stress strain behavior of rockfills. Numerical simulation is carried out to simulate the evolution of deformation and stress of a core-wall type rockfill dam during the first water impounding. The results are reasonable.

Key words: rockfill, wetting behavior, hypoplasticity, Gudehus-Bauer model, numerical verification, core-wall type rockfill dam

CLC Number: 

  • TU 431
[1] WANG feng, ZHANG Jian-qing, . Study of breakage behaviour of original rockfill materials considering size effect on particle strength [J]. Rock and Soil Mechanics, 2020, 41(1): 87-94.
[2] ZHOU Meng-jia, WEN Yan-feng, DENG Gang, WANG Yun-jia, SONG Er-xiang, . Three-dimensional discrete element simulation of random breaking strength and size effect in single particle splitting test of rockfill [J]. Rock and Soil Mechanics, 2019, 40(S1): 503-510.
[3] LIU Si-hong, SHEN Chao-min, MAO Hang-yu, SUN Yi. State-dependent elastoplastic constitutive model for rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2891-2898.
[4] DING Yan-hui, ZHANG Bing-yin, QIAN Xiao-xiang, YIN Yin, SUN Xun, . Experimental study of the characteristics of wetting deformation of rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2975-2981.
[5] ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, TANG Xin-jun, . A static and dynamic constitutive model of rockfill material considering particle breakage [J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554.
[6] KONG Xian-jing, NING Fan-wei, LIU Jing-mao, ZOU De-gao, ZHOU Chen-guang, . Influences of stress paths and saturation on particle breakage of rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(6): 2059-2065.
[7] WANG Tao, LIU Si-hong, ZHENG Shou-ren, LU Yang, . Experimental study of compression characteristics of rockfill materials with composite grout [J]. Rock and Soil Mechanics, 2019, 40(4): 1420-1426.
[8] SHENG Yun-feng, CHEN Yuan, ZHOU Wei, MA Gang, CHANG Xiao-lin, . Dynamic response analysis of rockfill dam based on modified dynamic shear modulus model [J]. Rock and Soil Mechanics, 2018, 39(S2): 405-414.
[9] LI Yang, SHE Cheng-xue, ZHU Huan-chun, . Simulation and verification of particle flow of vibration rolling compaction of field rockfill [J]. Rock and Soil Mechanics, 2018, 39(S2): 432-442.
[10] ZHOU Xiong-xiong, CHI Shi-chun, JIA Yu-feng, XIE Yun-fei, . Detailed simulation method for filling process of high earth and rockfill dams [J]. Rock and Soil Mechanics, 2018, 39(S2): 443-450.
[11] WEI Kuang-min , CHEN Sheng-shui, LI Guo-ying, WU Jun-jie, . Influence of contact effect between dam body and dam foundation on behaviours of high concrete faced rockfill dam built in steep valleys [J]. , 2018, 39(9): 3415-3424.
[12] LI Yang, SHE Cheng-xue. Numerical simulation of effect of size on crushing strength of rockfill grains using particle flow code [J]. , 2018, 39(8): 2951-2959.
[13] YANG Gui, SUN Xin, WANG Yang-yang, . Tests on resilient behaviour of polymer rockfill materials [J]. , 2018, 39(5): 1669-1674.
[14] LIU Guo-ming, CHEN Ze-qin, WU Le-hai. Improvement of Gudehus-Bauer hypoplastic constitutive model for rockfill materials and the determination of model parameters [J]. , 2018, 39(3): 823-830.
[15] JIANG Jing-shan, CHENG Zhan-lin, ZUO Yong-zhen, DING Hong-shun,. Effect of dry density on mechanical properties of rockfill materials [J]. , 2018, 39(2): 507-514.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Zhong-hua,WANG Wei-dong. Selection of soil constitutive models for numerical analysis of deep excavations in close proximity to sensitive properties[J]. , 2010, 31(1): 258 -264 .
[2] LI Li-ping, LI Shu-cai, ZHANG Qing-song. Study of mechanism of water inrush induced by hydraulic fracturing in karst tunnels[J]. , 2010, 31(2): 523 -528 .
[3] ZHANG Wen, WANG Ze-wen, LE Li-hua. A mathematical model of nuclide migration and its inverse analysis in dual media[J]. , 2010, 31(2): 553 -558 .
[4] LI Li-hua,CHEN Lun,GAO Sheng-yan. Experimental research on thixotropy of wetland soft soil in Cuihu[J]. , 2010, 31(3): 765 -768 .
[5] HU Ya-yuan. Determination of unloading time based on EVP model[J]. , 2010, 31(6): 1827 -1832 .
[6] ZHANG Ding-wen, HAN Wen-jun, LIU Song-yu. Mechanism of cylindrical cavity expansion under anisotropic initial stress state[J]. , 2010, 31(S2): 104 -108 .
[7] LI Ke-gang, HOU Ke-peng, LI Wang. Research on influences of factors dynamic weight on slope stability[J]. , 2009, 30(2): 492 -496 .
[8] HONG Yong, SUN Tao, LUAN Mao-tian, ZHENG Xiao-yu, WANG Fa-wu. Development and application of geotechnical ring shear apparatus: an overview[J]. , 2009, 30(3): 628 -633 .
[9] ZHANG Qian-bing, ZHU Wei-shen, LI Yong, SUN Lin-feng, ZHANG Lei. Design of mini multipoint extensometer in geomechanical model test of cavern group and its application[J]. , 2011, 32(2): 623 -628 .
[10] ZHANG Hu-yuan ,ZHAO Tian-yu ,WU Jun-rong ,YAN Geng-sheng ,FENG Lei. Laboratory measurement and prediction to the permeability of bentonite-modified loess as a landfill liner[J]. , 2011, 32(7): 1963 -1969 .