Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (4): 1305-1312.doi: 10.16285/j.rsm.2019.0711

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of triaxial interval fatigue of salt rock

LI Zong-ze, JIANG De-yi, FAN Jin-yang, CHEN Jie, LIU Wei, WU Fei, DU Chao, KANG Yan-fei   

  1. State Key Laboratory for the Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
  • Received:2019-04-21 Revised:2019-07-23 Online:2020-04-11 Published:2020-07-01
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51834003, 41672292, 41702309, 51904039).

Abstract: In order to study the discontinuous fatigue failure evolution process of surrounding rock of underground salt cavern gas storage under intermittent cyclic loads of injection and production, triaxial interval fatigue tests on deep salt rock from Pakistan was carried out, and the effects of confining pressure and stress level on the interval fatigue of salt rock under triaxial condition were analyzed. The results show that: Compared with uniaxial interval fatigue, confining pressure not only improves the compressive strength of salt rock specimens, but also increases the fatigue life of salt rock. The higher confining pressure results in a more significant increase in range. In triaxial interval fatigue tests, the residual strain of the stress cycles after intervals is larger than that before the interval, which is consistent with the results from uniaxial interval fatigue tests. However, the increase of confining pressure will lead to a decrease in the residual strain accumulation and the residual deformation difference between the cycles before and after the interval. With the increase of stress level, the residual strain and the difference of residual strain before and after time interval both show an increasing trend.

Key words: salt rock, interval fatigue, confining pressure, cyclic loading

CLC Number: 

  • TU 452
[1] ZHAO Kai, MA Hong-ling, SHI Xi-lin, LI Yin-ping, YANG Chun-he, . Long-term stability assessment of salt caverns for compressed air energy storage based on creep-fatigue constitutive model [J]. Rock and Soil Mechanics, 2025, 46(S1): 1-12.
[2] FU Qiang, YANG Ke, LIU Qin-jie, SONG Tao-tao, WU Ben-niu, YU Peng, . Interface strength characteristics of surrounding rock-lining composite structures under cyclic loading [J]. Rock and Soil Mechanics, 2025, 46(S1): 40-52.
[3] ZHANG Sheng, BAI Wei, XU Ding-ping, ZHENG Hong, JIANG Quan, LI Zhi-wei, XIANG Tian-bing, . Experimental and theoretical study on sandstone damage evolution under cyclic loading based on acoustic emission and resistivity monitoring [J]. Rock and Soil Mechanics, 2025, 46(S1): 53-66.
[4] WANG Ning-bo, YAO Yang-ping, LIU Lin, LI Xiang-yu, MAO An-qi, LI Ning, . Unified hardending model for sand considering confining pressure effects [J]. Rock and Soil Mechanics, 2025, 46(S1): 297-308.
[5] LI Bin, SHEN Hai-meng, LI Qi, LI Xia-ying, . A numerical simulation of dynamic evolution of permeability during granite shear process under different confining pressures [J]. Rock and Soil Mechanics, 2025, 46(S1): 437-453.
[6] LIU Wen, FAN Jin-yang, LIU Wen-hao, CHEN Jie, LIU Wei, WU Fei, . Stress relaxation characteristics of salt rock under the action of air barometric stress coupling [J]. Rock and Soil Mechanics, 2025, 46(8): 2434-2448.
[7] ZHANG Tian-jun, TIAN Jia-wei, ZHANG Lei, PANG Ming-kun, PAN Hong-yu, MENG Wei, HE Sui-nan, . Permeability and tortuosity evolution of crushed coal under cyclic loading [J]. Rock and Soil Mechanics, 2025, 46(5): 1409-1418.
[8] WANG Xin, XING An-kang, ZENG Zi-qiang, JIANG Yi, XU Jian-yu, WANG Xiao-nan, LIU Zao-bao, . Experiment of shear mechanical properties of layered iron ore [J]. Rock and Soil Mechanics, 2025, 46(4): 1039-1048.
[9] LUO Bin-yu, SU Yuan, LIU Xiao-yun, HUANG Teng-da, XIAO Feng-yi, LIU Lan-xin, LI Peng-cheng, . Preliminary study on the behavior of rock strength considering the combined effects of seam dip and confining pressure [J]. Rock and Soil Mechanics, 2025, 46(3): 775-788.
[10] CAO Su-nan, LI Chun-hong, CHEN Yuan-bing, FEI Kang, . Shear characteristics of biomimetic sand-structure interface under cyclic loading conditions [J]. Rock and Soil Mechanics, 2025, 46(3): 821-832.
[11] TANG Jin-zhou, TANG Wen-hao, YANG Ke, ZHAO Yan-lin, LIU Qin-jie, DUAN Min-ke, TAN Zhe, . Mechanical response characteristics and seepage evolution patbern of sandstone with an inclined single fracture under cyclic loading [J]. Rock and Soil Mechanics, 2025, 46(1): 199-212.
[12] WU Peng, CHEN Jian, FU Xiao-dong, HUANG Jue-hao, . Deformation characteristics and energy evolution pattern of both dry and saturated argillaceous siltstone under cyclic load applications [J]. Rock and Soil Mechanics, 2024, 45(S1): 195-207.
[13] LIU Xiao-pei, JIANG Quan, LI Shao-jun, XIN Jie, CHEN Peng-fei, . Energy characteristics of progressive damage of Jinping marble under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2024, 45(8): 2373-2386.
[14] GAO Lu-chao, DAI Guo-liang, ZHANG Ji-sheng, WAN Zhi-hui, YAO Zhong-yuan, WANG Yang, . Centrifugal model tests on lateral cyclic loading behavior of large-diameter monopiles in soft clay [J]. Rock and Soil Mechanics, 2024, 45(8): 2411-2420.
[15] YIN Shan, SONG Da-zhao, WANG En-yuan, HE Xue-qiu, LI Zhong-hui, LIU Xiao-fei, LIU Yu-bing, . Study on the magnetic field response law of sandstone during deformation and failure [J]. Rock and Soil Mechanics, 2024, 45(6): 1803-1812.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!