Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (8): 2525-2535.doi: 10.16285/j.rsm.2019.1799

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Elastoplastic solution for a deep-buried tunnel considering swelling stress and dilatancy

CHEN You-liang1, 2, LIU Geng-yun1, DU Xi1, 3, RAFIG Azzam2, WU Dong-peng1, 4   

  1. 1. Department of Civil Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. Department of Engineering Geology and Hydrogeology, RWTH Aachen University, Aachen 52064, Germany; 3. School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, Australia; 4. Shanghai Shentong Metro Group Co., Ltd., Shanghai 201804, China
  • Received:2019-10-21 Revised:2020-03-14 Online:2020-08-14 Published:2020-10-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (10872133) and the Key Projects in Soft Science Research in Shanghai (18692106100).

Abstract: This study focuses on tunneling under challenging conditions, particularly with regard to the stress distribution and deformation in the humidity stress field. The swelling phenomenon during tunneling has been treated as a coupled humidity–mechanics process, where the humidity diffusion and stress dilatancy are considered together to obtain stress and deformation fields for tunnels crossing the formations with high swelling potential. A solution to the nonstationary process of humidity transfer has been derived according to Fick’s second law. The swelling pressure has been included in the form of body force, and a non-associated flow rule has been adopted to obtain the analytical solutions. Next, considering the examples of rock tunnels that are excavated in two different quality rock mass, we have investigated the impact factors on stress and deformation in swelling surrounding rock. Numerical results show that the inclusion of the swelling stress increases the plastic zone of the surrounding rock and the maximum stress at the elastic-plastic boundary, whereas the stress convergence has been decreased. After a certain increase in swelling pressure, a tensile stress zone appears in the plastic circle. The deformation of surrounding rock caused by swelling pressure can be much more significant than that caused by in-situ stress. Furthermore, the effect of dilatancy on the deformation rock cannot be negligible especially when the support resistance is small. This paper presents a new possible workflow to quickly evaluate the elastic-plastic stress and deformation of tunnels in swelling surrounding rock.

Key words: deep-buried tunnel, humidity stress field, swelling stress, dilatancy, elastoplastic solution

CLC Number: 

  • TU 431
[1] RAN Long-zhou, YUAN Song, WANG Xi-bao, ZHANG Ting-biao, LIU De-jun, LI Liang-pu, . Calculation method for surrounding rock pressure in deep-buried tunnels using shield tunnel boring machine method considering the interaction among surrounding rock-shield body-grouting material-lining segments [J]. Rock and Soil Mechanics, 2025, 46(S1): 366-376.
[2] ZHOU Xiong-xiong, HUANG Jia-shuo, LI Ruo-ting, ZHANG Jian-yu, . Modified Cambridge model and its parameters for wetting deformation in rockfill materials [J]. Rock and Soil Mechanics, 2025, 46(9): 2703-2710.
[3] XU Bin, CHEN Ke-hao, PANG Rui, . Dilatancy equation and bounding surface model of over-consolidated clay [J]. Rock and Soil Mechanics, 2025, 46(2): 449-456.
[4] GENG Xiao-wei, CHEN Cheng, SUN Zhong-hua, LI Wei, WANG Yong, XU Meng-bing, YU Song, . A constitutive model of sand considering fabric anisotropy based on generalized potential theory [J]. Rock and Soil Mechanics, 2025, 46(10): 3175-3186.
[5] SONG Yang, WANG He-ping, ZHANG Wei-dong, ZHAO Li-cai, ZHOU Jian-hua, MAO Jing-han, . Shear characteristics of anchored filling jointed rock mass under constant normal stiffness [J]. Rock and Soil Mechanics, 2024, 45(9): 2695-2706.
[6] ZHANG Chang-guang, ZHOU Wei, XU Hao, ZHAO Shuai, SUN Shan-shan, . Brittle-plastic solutions of disturbance-damaged rock tunnels based on unified strength theory [J]. Rock and Soil Mechanics, 2024, 45(5): 1343-1355.
[7] XU Bin, WANG Xing-liang, PANG Rui, CHEN Ke-hao, . Elastoplastic constitutive model of sand-gravel composites accounting for fabric evolution effects [J]. Rock and Soil Mechanics, 2024, 45(11): 3197-3211.
[8] CUI Xin-zhuang, JIANG Peng, WANG Yi-lin, JIN Qing, CHEN Lu, . On the role of dilatancy induced by high resistance hyperstatic geogrids in coarse-grained soil layer [J]. Rock and Soil Mechanics, 2024, 45(1): 141-152.
[9] ZHAO Shun-li, YANG Zhi-jun, FU Xu-dong, FANG Zheng, . Shear damage mechanism of coarse-grained materials considering strain localization [J]. Rock and Soil Mechanics, 2023, 44(1): 31-42.
[10] JIANG Chang-bao, YU Tang, WEI Wen-hui, DUAN Min-ke, YANG Yang, WEI Cai, . Permeability evolution model of coal under loading and unloading stresses [J]. Rock and Soil Mechanics, 2022, 43(S1): 13-22.
[11] LIU Yan-jing, WANG Lu-jun, ZHU Bin, CHEN Yun-min, . An elastoplastic constitutive model for hydrate-bearing sediments considering the effects of filling and bonding [J]. Rock and Soil Mechanics, 2022, 43(9): 2471-2482.
[12] XU Long-fei, WENG Xiao-lin, ZHANG Ai-jun, ZHAO Gao-wen, WONG Henry, FABBRI Antonin, . Experimental study of water retention characteristics and vapor migration of earth material under relative humidity variation [J]. Rock and Soil Mechanics, 2021, 42(9): 2489-2498.
[13] CAO Shuo, YU Yong, WANG Bo, . Viscoelasto-viscoplastic solutions for circular tunnel based on D-P yield criterion and Nishihara model [J]. Rock and Soil Mechanics, 2021, 42(7): 1925-1932.
[14] WANG Li, LI Gao, CHEN Yong, TAN Jian-min, WANG Shi-mei, GUO Fei, . Field model test on failure mechanism of artificial cut-slope rainfall in Southern Jiangxi [J]. Rock and Soil Mechanics, 2021, 42(3): 846-854.
[15] YU Jin, LIU Ze-han, LIN Li-hua, HUANG Jian-guo, REN Wen-bin, ZHOU Lei, . Characteristics of dilatancy of marble under variable amplitude cyclic loading and unloading [J]. Rock and Soil Mechanics, 2021, 42(11): 2934-2942.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!