Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (8): 2555-2563.doi: 10.16285/j.rsm.2019.1625

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Deformation and fracturing characteristics of fracture network model and influence of filling based on 3D printing and DIC technologies

ZHANG Ke1, QI Fei-fei1, CHEN Yu-long2   

  1. 1. Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; 2. School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
  • Received:2019-09-19 Revised:2019-12-26 Online:2020-08-14 Published:2020-10-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41762021, 11902128) and the Applied Basic Research Foundation of Yunnan Province (2019FI012)

Abstract: Due to the complexity of fracture distribution in engineering rock mass, the physical modeling of fracture network is one of the key problems in rock mechanics experiments. In this study, a 3D printing method of fracture network model based on water-soluble materials with polyactic acid materials as supporting base is proposed. Based on the water solubility of printing material, a method for preparing rock-like model specimens containing fracture network is established. Through digital image correlation (DIC) method, the deformation and fracturing characteristics of rock-like model specimens during loading process are quantitatively studied, and the influence law of filling material is further analyzed. The experimental results show that 3D printing technology is capable to prepare complex fracture network model with satisfied repeatability of mechanical properties. The stress-strain curve of fracture network rock-like model presents several evident stress reductions before its peak strength, whereas the plastic strain softening is encountered after peak strength. DIC technology can capture the global strain field of fracture network rock-like model during the whole loading process. Moreover, the progressive evolution of strain localization is observed in the process of deformation and fracturing, which reflects the law of crack initiation, propagation and coalescence. The mechanical parameters and strain field distributions of model specimens are influenced by different filling conditions. The advantage of the proposed method is reflected by the fact that the filling material can be filled into the fractures in accordance with the actual engineering condition.

Key words: rock mechanics, fracture network, 3D printing, fracturing, digital image correlation method, strain field

CLC Number: 

  • TU 452
[1] LIU Yi-ming, LI Zhen, FENG Guo-rui, YANG Peng, BAI Jin-wen, HUANG Bing-xiong, LI Dong, . Acoustic-thermal response characteristics and precursor law of fissured sandstone under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2025, 46(9): 2773-2791.
[2] LI Xiao-feng, LI Hai-bo, LIU Li-wang, FU Shuai-yang, . Tensile failure characteristics and mesoscopic mechanism of rocks under impact loading [J]. Rock and Soil Mechanics, 2025, 46(8): 2387-2398.
[3] TANG Mei-rong, ZHANG Guang-qing, ZHANG Min, . Experiment on spatial distribution characteristics of fracture network from 3D multi-horizontal well hydraulic fracturing [J]. Rock and Soil Mechanics, 2025, 46(8): 2449-2458.
[4] SHEN Yang, SHEN Jia-yi, LIANG Hui, FAN Ke-wei. Triaxial tests on simulated calcareous sand based on 3D printing technology [J]. Rock and Soil Mechanics, 2025, 46(8): 2353-2362.
[5] LYU Meng, WANG Liang-qing, XIE Ni, ZHU Lin-feng, AN Cai-long, KE Rui, WANG Xu-chen, . Shear characteristics and acoustic emission response characteristics of anchored heterogeneous structural plane [J]. Rock and Soil Mechanics, 2025, 46(7): 2106-2120.
[6] NI Zu-jia, QIAO Jiang-mei, ZHANG Jun-kai, TANG Xu-hai, . Determining mechanical property and wave velocity of sandstone by accurate grain-based model and microscale mechanics experiments [J]. Rock and Soil Mechanics, 2025, 46(6): 1865-1880.
[7] ZHANG Yan-bo, ZHOU Hao, LIANG Peng, YAO Xu-long, TAO Zhi-gang, LAI You-bang, . Acoustic emission location method of rock based on time precise picking and intelligent optimization algorithm [J]. Rock and Soil Mechanics, 2025, 46(5): 1643-1656.
[8] SHEN Lin-fang, HUA Tao, WANG Zhi-liang, LI Song-bo, CHEN Qian. Effect of parameter spatial variability on fracture propagation morphology of rock hydraulic fracturing [J]. Rock and Soil Mechanics, 2025, 46(4): 1294-1302.
[9] WANG Gang, WANG En-mao, LONG Qing-ming, XU Hao, CHEN Xue-chang, LIU Kun-lun, . Relationship between hydraulic fracturing and fracture propagation in coal seams considering filtration effect [J]. Rock and Soil Mechanics, 2025, 46(4): 1071-1083.
[10] MA Yu-hang, HE Ming-ming, LI Ning, . Development of the XCY-2 rotary cutting and penetrating system and its application [J]. Rock and Soil Mechanics, 2025, 46(3): 1025-1038.
[11] CAO Hu, ZHANG Guang-qing, LI Shi-yuan, WANG Wen-rui, XIE Peng-xu, SUN Wei, LI Shuai, . A hydraulic fracture extension model for fracturing and enhanced oil recovery considering the influence of the fracture process zone and its application [J]. Rock and Soil Mechanics, 2025, 46(3): 798-810.
[12] LI Li-ping, YU Hong-hao, LI Qiu-yu, PAN Yi-shan, . Experiment on ultra-low friction effect of water-bearing coal block [J]. Rock and Soil Mechanics, 2025, 46(10): 3093-3103.
[13] LIU Yu-peng, CHANG Xin, YANG Chun-he, GUO Yin-tong, HOU Zhen-kun, LI Shuang-ming, JIA Chang-gui, . Physical simulation of high-temperature true triaxial fracturing of deep shale in south Sichuan under strike-slip stress characteristics [J]. Rock and Soil Mechanics, 2025, 46(10): 3104-3116.
[14] SUN Jie-hao, GUO Bao-hua, TIAN Shi-xuan, CHENG Tan, . Experimental study of direct shear failure characteristics of sandstone joints based on characteristic parameters of acoustic emission [J]. Rock and Soil Mechanics, 2024, 45(S1): 167-177.
[15] FAN Hao, WANG Lei, LUO Yong, ZHU Chuan-qi, . Experimental study on triaxial creep characteristics of unloading-damaged sandstone under step loading [J]. Rock and Soil Mechanics, 2024, 45(S1): 277-288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!