Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (11): 3823-3830.doi: 10.16285/j.rsm.2020.0227

• Numerical Analysis • Previous Articles    

Macroelement modelling of caisson foundation in clay

CHEN Jia-ying1, TENG Jing-cheng2, 3, YIN Zhen-yu2, 3   

  1. 1. CCCC Third Harbor Consultants Co., Ltd, Shanghai 200032, China; 2. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China; 3. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
  • Received:2020-01-09 Revised:2020-04-13 Online:2020-11-11 Published:2020-12-25
  • Supported by:
    This work was supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0503)。

Abstract: The purpose of this study is to model the caisson in clay from a complete finite element analysis to a simplified microelement modeling. First, the finite element method is used to analyze the caisson foundation in clay under different monotonic combined loadings. To ensure the reliability of the simulation results, the hardened soil model (HS) is adopted to simulate the normally consolidated clay. The effectiveness of the finite element analysis using the HS model is verified through comparing with centrifugal tests, and the swipe tests with radial displacement control is further extended to the study of failure modes in V-H-M (vertical force-horizontal force-bending moment) space. A three-dimensional failure envelope formula for the caisson foundation in clay in V-H-M space is proposed. Then, using this three-dimensional failure envelope formula, a macroelement design model for the caisson foundation in clay is proposed using a hypoplastic framework. By comparing with the experimental results, the validity of the strength and deformation response of the caisson foundation under simulated monotonic and cyclic loading conditions are verified. The proposed macroelement based model is practically useful in marine geotechnical design.

Key words: caisson foundation, failure envelope, clay, finite element method, cyclic loading, macro-element

CLC Number: 

  • O 241
[1] FENG De-luan, YU Yang, LIANG Shi-hua. Research progress and review on strength and water stability of alkali-activated cementitious material solidified coastal soft clay [J]. Rock and Soil Mechanics, 2025, 46(S1): 13-39.
[2] FU Qiang, YANG Ke, LIU Qin-jie, SONG Tao-tao, WU Ben-niu, YU Peng, . Interface strength characteristics of surrounding rock-lining composite structures under cyclic loading [J]. Rock and Soil Mechanics, 2025, 46(S1): 40-52.
[3] ZHANG Sheng, BAI Wei, XU Ding-ping, ZHENG Hong, JIANG Quan, LI Zhi-wei, XIANG Tian-bing, . Experimental and theoretical study on sandstone damage evolution under cyclic loading based on acoustic emission and resistivity monitoring [J]. Rock and Soil Mechanics, 2025, 46(S1): 53-66.
[4] DUAN Shu-su, HOU Zhi-qiang, WANG Zhi-jia, HU Jun, ZHANG You-liang, ZHANG Jian-jing. Experimental study on the effect of D-sorbitol on microbially induced calcium carbonate precipitation and reinforcement of red clay [J]. Rock and Soil Mechanics, 2025, 46(S1): 238-248.
[5] CAI Qi-hang, DONG Xue-chao, GUO Ming-wei, LU Zheng, XU An, JIANG Fan, . Intelligent prediction of sinking of super-large anchorage caisson foundation based on soil pressure at cutting edges [J]. Rock and Soil Mechanics, 2025, 46(S1): 377-388.
[6] ZHANG Xian-cheng, CHI Bao-tao, YU Xian-ze, GUO Qian-jian, YUAN Wei, ZHANG Yao-ming, . Unstructured mesh generation and fracture damage analysis in the implementation of peridynamics-based finite element method [J]. Rock and Soil Mechanics, 2025, 46(S1): 467-476.
[7] ZHANG Chi, DENG Long-chuan, ZHUANG Qian-wei, LI Xiao-zhao, WANG Qiu-ping, QIAO Liang, . Experimental and numerical investigations on rotary rock-breaking force and efficiency of disc cutter [J]. Rock and Soil Mechanics, 2025, 46(9): 2995-3006.
[8] ZHANG Hai-yan, HU Xin-li, LIU Xin-yu, LI Ya-bo. Effects of water content and shear rate on shear behavior and damage evolution of clayey sliding-zone soils [J]. Rock and Soil Mechanics, 2025, 46(8): 2471-2482.
[9] CHEN Deng-hong, ZHANG Xin-han, LIU Yun-hui, HU Hao-wen, LIU Yun-long, LIANG Yu-xiang, . Nonlinear seismic response analysis of high arch dam-irregular foundation- reservoir water system based on octree scaled boundary finite element method [J]. Rock and Soil Mechanics, 2025, 46(8): 2586-2599.
[10] CAO Yi, RONG Chuan-xin, WANG Yan-sen, CHANG Lei, WANG Bin, . Mechanical response and constitutive modeling of frozen calcareous clay under complex multi-axial stress paths [J]. Rock and Soil Mechanics, 2025, 46(7): 2071-2084.
[11] ZHANG Tian-jun, TIAN Jia-wei, ZHANG Lei, PANG Ming-kun, PAN Hong-yu, MENG Wei, HE Sui-nan, . Permeability and tortuosity evolution of crushed coal under cyclic loading [J]. Rock and Soil Mechanics, 2025, 46(5): 1409-1418.
[12] WU Qing-qian, SHI Lu, LI Xiao-chun, BAI Bing, . Experimental study on effects of H2O and supercritical CO2 on mechanical properties of sandstone with a low clay mineral content [J]. Rock and Soil Mechanics, 2025, 46(5): 1442-1454.
[13] CHAI Hong-tao, WEN Song-lin, . Centrifugal model test on characteristics of pile foundation bearing capacity failure envelope curve under combined loading [J]. Rock and Soil Mechanics, 2025, 46(5): 1556-1562.
[14] WANG Meng-jie, ZHANG Sha-sha, YANG Xiao-hua, ZHANG Chao, YAN Chang-gen, . Dynamic characteristics of silty clay in flood irrigation areas under cyclic loading [J]. Rock and Soil Mechanics, 2025, 46(4): 1215-1227.
[15] ZHOU Bo-han, ZHANG Wen-li, WANG Dong, . Numerical study of ball penetrometer for predicting strength of overconsolidated soils [J]. Rock and Soil Mechanics, 2025, 46(4): 1303-1309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!