Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (12): 3996-4004.doi: 10.16285/j.rsm.2020.0521

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of liquid CO2 fracturing mechanism of glutenite

MA Dong-dong1, 2, CHEN Qing3, ZHOU Hui1, 2, TENG Qi3, LI Ke3, HU Da-wei1, 2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Petro China Tarim Oilfield Company, Korla, Xinjiang 841000, China
  • Received:2020-05-06 Revised:2020-07-05 Online:2020-12-11 Published:2021-01-18
  • Supported by:
    This work was supported by the National Key R&D Program of China(2018YFC0809600, 2018YFC0809601), the Major Technological Innovation Projects of Hubei(2017AAA128), the National Natural Science Foundation of China(51779252) and the Hubei Province Natural Science Foundation Innovation Group (2018CFA013).

Abstract: Glutenite formations usually characterized by their dense and heterogeneity, thus the fracturing effect of conventional fracturing methods is not ideal. Liquid CO2 (L-CO2) fracturing is a fracturing stimulation method proposed in recent years, and the fracturing effect has obvious advantages. Water and L-CO2 fracturing tests are conducted on downhole cores, ?CT scanning and NMR tests are used to compare the difference of breakdown pressure, fracture characteristic and crack distribution and the L-CO2 fracturing mechanism in glutenite is deeply analyzed. It is found that under the same confining pressure, L-CO2 can greatly reduce the breakdown pressure, and the difference between the breakdown pressure of L-CO2 fracturing and water fracturing increases with increasing confining pressure. ?CT scanning shows that the fractures induced by L-CO2 fracturing are irregular fractures, which are more likely to deflect between gravel particles in glutenite, causing a branch fractures and complex fractures networks. The fracture volume of L-CO2 fracturing is much larger than that of hydraulic fracturing. Nuclear magnetic resonance (NMR) results show that L-CO2 fracturing mainly breaks through the micro-cracks at the interface of gravel particles, and the shear activation mechanism has a significant effect, while hydraulic fracturing mainly takes the form of a single tensile fracture rupture. The better fracture network obtained by L-CO2 fracturing is mainly related to the strong heterogeneity caused by gravel particles in glutenite, which affects the complexity of induced fractures. Relevant research results can provide guidance for glutenite reservoir fracturing and process optimization for increasing production and efficiency.

Key words: glutenite, L-CO2, fracturing, ?CT scaning, nuclear magnetic resonance

CLC Number: 

  • TU453
[1] TANG Mei-rong, ZHANG Guang-qing, ZHANG Min, . Experiment on spatial distribution characteristics of fracture network from 3D multi-horizontal well hydraulic fracturing [J]. Rock and Soil Mechanics, 2025, 46(8): 2449-2458.
[2] SHEN Lin-fang, HUA Tao, WANG Zhi-liang, LI Song-bo, CHEN Qian. Effect of parameter spatial variability on fracture propagation morphology of rock hydraulic fracturing [J]. Rock and Soil Mechanics, 2025, 46(4): 1294-1302.
[3] SONG Yong-jun, LU Yun-long, WANG Shuang-long, XIE Li-jun, CAO Jing-hui, AN Xu-chen, . Evolution characteristics of unfrozen water content and its influence on mechanical properties of rock during freeze-thaw process [J]. Rock and Soil Mechanics, 2025, 46(4): 1049-1059.
[4] WANG Gang, WANG En-mao, LONG Qing-ming, XU Hao, CHEN Xue-chang, LIU Kun-lun, . Relationship between hydraulic fracturing and fracture propagation in coal seams considering filtration effect [J]. Rock and Soil Mechanics, 2025, 46(4): 1071-1083.
[5] CAO Hu, ZHANG Guang-qing, LI Shi-yuan, WANG Wen-rui, XIE Peng-xu, SUN Wei, LI Shuai, . A hydraulic fracture extension model for fracturing and enhanced oil recovery considering the influence of the fracture process zone and its application [J]. Rock and Soil Mechanics, 2025, 46(3): 798-810.
[6] CUI Wen-wen, DONG Xiao-qiang, LIU Xiao-yong, ZHAO Rui-yang, HE Gao-le, ZHANG Meng, ZHOU Lei, WU Xue-wen, . Hydration kinetics and hydration mechanism of red mud-based cementitious materials [J]. Rock and Soil Mechanics, 2025, 46(3): 867-880.
[7] LIU Yu-peng, CHANG Xin, YANG Chun-he, GUO Yin-tong, HOU Zhen-kun, LI Shuang-ming, JIA Chang-gui, . Physical simulation of high-temperature true triaxial fracturing of deep shale in south Sichuan under strike-slip stress characteristics [J]. Rock and Soil Mechanics, 2025, 46(10): 3104-3116.
[8] HE Yuan-yuan, PENG Qi-lan, WANG Li, WANG Shi-mei, NIE Lei, XU Yan, LYU Yan, CHEN Yong, ZHANG Xian-wei. Investigating pore characteristics and permeability of seasonally frozen turfy soil using multiple micro-test methods [J]. Rock and Soil Mechanics, 2025, 46(1): 110-122.
[9] HAO Feng-fu, MA Tian-tian, YU Hai-wen, WEI Chang-fu, TIAN Hui-hui, YI Pan-pan, . Experimental study of the influence of cation exchange capacity on hydration in interlayers of bentonite [J]. Rock and Soil Mechanics, 2024, 45(9): 2611-2620.
[10] CHEN Qian, WANG Zhi-liang, SHEN Lin-fang, HUA Tao, LI Shao-jun, XU Ze-min, . A numerical simulation of high-temperature rock hydraulic fracturing based on coupled thermo-mechanical peridynamics [J]. Rock and Soil Mechanics, 2024, 45(8): 2502-2514.
[11] LÜ Mao-lin, ZHU Zhen-de, ZHOU Lu-ming, GE Xin-liang, . Numerical simulation of hydraulic fracture propagation in rock masses with pre-existing double fractures using the phase field method [J]. Rock and Soil Mechanics, 2024, 45(6): 1850-1862.
[12] SUN Wei-feng, HUANG Huo-lin, SUN Dong-sheng, MENG Wen, CHEN Qun-ce, . Present in situ stress measurement in the eastern segment of Yarlung Zangbo River fault and fault activity analysis [J]. Rock and Soil Mechanics, 2024, 45(4): 1129-1141.
[13] LIU Han-xiang, YE Diao-yu, BIE Peng-fei, ZHU Xing, . Experimental study of microscopic and mesoscopic damage features of limestone under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2024, 45(3): 685-696.
[14] LI Hao-zhe, JIANG Zai-bing, FAN Zong-yang, PANG Tao, LIU Xiu-gang, . Experimental study on dynamic propagation characteristics of fracturing crack across coal-rock interface [J]. Rock and Soil Mechanics, 2024, 45(3): 737-749.
[15] HUA Tao, SHEN Lin-fang, WANG Zhi-liang, LI Ze, XU Ze-min. Numerical simulation of rock hydraulic fracturing based on peridynamics and quantitative analysis of fracture network [J]. Rock and Soil Mechanics, 2024, 45(2): 612-622.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!