Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (12): 4054-4062.

• Geotechnical Engineering • Previous Articles     Next Articles

Research and application of mud proportioning optimization of slurry balance shield in mudstone and gravel composite stratum

SONG Yang1, LI Ang2, WANG Wei-yi2, DU Chun-sheng3, ZHANG Duo3, FU Xing-xing3   

  1. 1. College of Architecture and Communications, Liaoning Technical University, Fuxin, Liaoning 123000, China; 2. School of Civil Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China; 3. China Railway Fourth Bureau Group No. 5 Engineering Co., Ltd., Jiujiang, Jiangxi 332000, China
  • Received:2020-05-17 Revised:2020-07-09 Online:2020-12-11 Published:2021-01-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51974146), the Natural Science Foundation of Liaoning Province (2019-ZD-0042) and the China Railway Four Bureaus Five Companies Key Scientific Research Projects(19-2138).

Abstract: Slurry performance is one of the key factors to maintain the stability of excavation face when slurry balance shield is tunneling in complex strata. Based on the engineering background of slurry shield tunneling in mudstone and gravel composite stratum of Nanning Metro Line 5, the control variable method and the self-made slurry shield tunneling system are adopted to compare and select the mud admixture and to analyze the influence of the admixture amount and the formation composite ratio on the slurry relative density. Then, the mud permeability law and the dynamic and static mud film forming law under different formation composite ratios, swelling water ratios and slag dosages are analyzed comprehensively by factorial design. The results show that different admixtures have significant influence on the properties of bentonite slurry. Specifically, potassium methyl silicate and potassium chloride can effectively reduce the relative density of slurry, while sodium chloride and sodium silicate can promote the disintegration of mudstone in water. In addition, the slag admixture can effectively reduce the water filtration, improving the film quality and reducing the consumption of bentonite. When the cutter head speed is less than or equal to 2.5 r/min, the formation rate of mud film is greater than or equal to the failure rate so as to ensure the stability of driving face. The mud swelling water ratio suitable for mudstone and gravel composite stratum (composite ratio: 0?1) is 0.1?0.20, the residue content is 100?200 g/kg, and the potassium methyl silicate is 3.75%?7.50%.

Key words: mud modification, penetration test, water filtration, mud relative density, slurry balance shield

CLC Number: 

  • TU415
[1] LAI Feng-wen, LIU Song-yu, CAI Guo-jun, LU Tai-shan, LI Hong-jiang, DUAN Wei, . An analytical approach to determine wall deflections of a deep excavation based on in-situ piezocone penetration test [J]. Rock and Soil Mechanics, 2025, 46(8): 2650-2660.
[2] FAN Meng, LI Jing-jun, YANG Zheng-quan, LIU Xiao-sheng, ZHU Kai-bin, ZHAO Jian-ming, . Applicability of standard penetration test based liquefaction assessment methods for sandy soil in deep layer [J]. Rock and Soil Mechanics, 2025, 46(7): 2085-2094.
[3] WU Dun, SUN Lin, LU Jian-wei, YU Bing-kun, CAI Guo-jun, . Research advances in in-situ characterization techniques for Martian soil and prospects for piezocone penetration test application [J]. Rock and Soil Mechanics, 2025, 46(7): 2308-2324.
[4] CHEN Zhi-bo, CHEN Feng, WENG Yang, CAO Guang-wei, ZENG Xu-ming, PAN Sheng-gui, YANG Hui, . Calculation method for vertical bearing capacity of large-diameter steel pipe piles considering the soil plugging effect [J]. Rock and Soil Mechanics, 2025, 46(7): 2224-2236.
[5] WANG Xin-long, NIE Li-qing, CAI Guo-jun, ZHANG Ning, ZHAO Ze-ning, LIU Xue-ning, SONG Deng-hui, . Evaluation of liquidity index based on SVR optimization algorithm using piezocone penetration test [J]. Rock and Soil Mechanics, 2024, 45(S1): 645-653.
[6] YANG Yang, WEI Yi-tong. A new method of liquefaction probability level evaluation based on classification tree [J]. Rock and Soil Mechanics, 2024, 45(7): 2175-2186.
[7] WANG Kuan-jun, LIU Bin, MO Pin-qiang, LI Guo-yao, ZHU Qi-yin, SHEN Kan-min, HU Jing, . Computational model of CPTu considering temperature effect and drainage state of silt [J]. Rock and Soil Mechanics, 2024, 45(6): 1731-1742.
[8] ZHANG Si-yu, LI Zhao-yan, YUAN Xiao-ming, . Comparison and validation of cone penetration test-based liquefaction evaluation methods [J]. Rock and Soil Mechanics, 2024, 45(5): 1517-1526.
[9] HUANG Peng, LEI Xue-wen, WANG Xin-zhi, SHENG Jian-hua, DING Hao-zhen, WEN Dong-sheng, . Stability of seepage erosion in gap-graded coral sand foundation [J]. Rock and Soil Mechanics, 2024, 45(11): 3366-3377.
[10] SUN Mao-jun, XIE Ya-nan, WANG Dong, . Large deformation simulation of pore pressure dissipation during penetration of piezoncone in structured soil [J]. Rock and Soil Mechanics, 2024, 45(11): 3416-3422.
[11] WANG Kuan-jun, SHEN Kan-min, WANG Ming-yuan, WANG Hong-yu, GUO Zhen, . Strength interpretation parameter of piezoncone penetration test for soft clay in offshore area of Hangzhou Bay [J]. Rock and Soil Mechanics, 2023, 44(S1): 521-532.
[12] LI Ya-zhou, LI Sen, . Theoretical study on the penetration resistance coefficient of bucket foundation [J]. Rock and Soil Mechanics, 2023, 44(S1): 443-448.
[13] ZHOU Jian, SHANG Xiao-nan, LIU Fu-shen, SHEN Jun-yi, LIAO Xing-chuan, . Numerical simulation of three-dimensional rock fragmentation by disc cutters of tunnel boring mechine using peridynamics [J]. Rock and Soil Mechanics, 2023, 44(9): 2732-2743.
[14] LIU Hui, SHEN Zhi-ping, FU Jun-yi. Rod length correction coefficient of DPT considering the influence of the measured number of hammer blow [J]. Rock and Soil Mechanics, 2023, 44(7): 2050-2063.
[15] ZHOU Hang, WU Han, ZENG Shao-hua, . Closed-form solution for cavity expansion in sand based on strain gradient plasticity [J]. Rock and Soil Mechanics, 2023, 44(3): 757-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!