Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (6): 1529-1539.doi: 10.16285/j.rsm.2020.1476

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

System failure probability analysis of cohesive slope considering the spatial variability of undrained shear strength

LIU Hui, ZHENG Jun-jie, ZHANG Rong-jun   

  1. Institute of Geotechnical and Underground Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • Received:2020-09-30 Revised:2021-03-04 Online:2021-06-11 Published:2021-06-15
  • Supported by:
    This work was supported by the National Key R&D Program of China(2016YFC0800200) and the National Natural Science Foundation of China(52078236).

Abstract: A system failure probability analysis method of cohesive slope considering the spatial variability of undrained shear strength is proposed. In this method, the local averaging parameter of the random field of undrained shear strength on slip surface is introduced as an equivalent parameter. The statistical characters of the equivalent parameter and the correlation coefficient between different equivalent parameters are formulated. Then, the reliability index of a single failure mode and the correlation coefficient between different failure modes are calculated based on the equivalent parameters. By considering both the reliability index and correlation coefficient between different failure modes, the representative slip surfaces are searched step by step, and the system failure probability is assessed using those representative slip surfaces. Finally, to verify this method, three slopes are analyzed as examples. The results show that the equivalent parameter obtained by local averaging along the circular slip surface is feasible to describe the spatial variability of the undrained shear strength, and the proposed method can assess the system failure probability of cohesive slope with small error. Meanwhile, the correlation coefficient between failure modes increases with the spatial correlation of the random field, thus the number of representative slip surfaces required to achieve convergence will reduce.

Key words: slope stability, system failure probability, spatial variability, correlative failure mode, equivalent parameter

CLC Number: 

  • TU442
[1] DENG Qi-ning, CUI Yu-long, WANG Jiong-chao, ZHENG Jun, XU Chong, . ChatGPT-assisted programming approach for three-dimensional slope stability calculation [J]. Rock and Soil Mechanics, 2025, 46(S1): 322-334.
[2] XU Quan, HOU Jing, YANG Jian, YANG Xin-guang, NI Shao-hu, CHEN Xin. Fine stability analysis of rock slope based on synthetic rock mass technology [J]. Rock and Soil Mechanics, 2025, 46(7): 2062-2070.
[3] YUAN Zhi-rong, JIANG Shui-hua, CHANG Zhi-lu, XIANG Hu, LIU Yu-wei, HUANG Jin-song, . Reliability analysis of slope stability considering non-uniform distribution of initial soil water content and pore water redistribution [J]. Rock and Soil Mechanics, 2025, 46(3): 1001-1012.
[4] DENG Zhi-ping, ZHONG Min, JIANG Shui-hua, PAN Min, HUANG Jin-song, . Efficient reliability analysis of three-dimensional slopes with nonstationary random field modeling of soil parameters [J]. Rock and Soil Mechanics, 2025, 46(10): 3243-3252.
[5] DENG Dong-ping, XU Run-dong, PENG Yi-hang, WEN Sha-sha. Limit equilibrium method based on mode of slip surface stress analysis for slope stability under the characteristics of spatial heterogeneity and anisotropy in soil strength [J]. Rock and Soil Mechanics, 2025, 46(1): 55-72.
[6] LIN Bin-qiang, ZHANG De-sheng, JIAN Wen-bin, DOU Hong-qiang, WANG Hao, FAN Xiu-feng, . Response of vegetated slope stability under wind-driven rain conditions [J]. Rock and Soil Mechanics, 2024, 45(9): 2765-2774.
[7] LIU Wei, XU Chang-jie, DU Hao-dong, ZHU Huai-long, WANG Chang-hong. Stability analysis of overconsolidated unsaturated red clay slope based on modified UH model [J]. Rock and Soil Mechanics, 2024, 45(4): 1233-1241.
[8] HU Hong-peng, JIANG Shui-hua, CHEN Dong, HUANG Jin-song, ZHOU Chuang-bing, . Probabilistic back analysis of slope parameters and reliability evaluation using improved Bayesian updating method [J]. Rock and Soil Mechanics, 2024, 45(3): 835-845.
[9] DENG Dong-ping, PENG Yi-hang, LIU Meng-qi, LI Yuan-yuan. Limit equilibrium method for analyzing slope stability with nonlinear failure characteristics considering the coupling relationship of polar diameter, stress, and strength of the slip surface [J]. Rock and Soil Mechanics, 2024, 45(11): 3235-3258.
[10] FENG Song, ZHENG Ying-ren, GAO Hong, . A new Drucker-Prager criterion for geomaterials under conventional triaxial stress condition [J]. Rock and Soil Mechanics, 2024, 45(10): 2919-2928.
[11] QU Xiao-lei, ZHANG Yun-kai, CHEN You-ran, CHEN You-yang, QI Cheng-zhi, . Stability analysis of fractured rock slope based on seepage-deformation coupling model using numerical manifold method [J]. Rock and Soil Mechanics, 2024, 45(1): 313-324.
[12] ZHU Bin, PEI Hua-fu, YANG Qing, LU Meng-meng, WANG Tao, . Probabilistic analysis of wave-induced seabed response based on stochastic finite element method [J]. Rock and Soil Mechanics, 2023, 44(5): 1545-1556.
[13] JIANG Qi-hao, WANG Jin-tong, HOU Bo, ZHANG Dong-ming, ZHANG Jin-zhang, . Bearing capacity of shallow foundations considering geological uncertainty and soil spatial variability [J]. Rock and Soil Mechanics, 2023, 44(11): 3288-3298.
[14] ZHANG Wen-lian, SUN Xiao-yun, CHEN Yong, JIN Shen-yi, . Slope stability analysis method based on compressive strength reduction of rock mass [J]. Rock and Soil Mechanics, 2022, 43(S2): 607-615.
[15] SADEGHI Hamed, KOLAHDOOZ Ali, AHMADI Mohammad-Mehdi. Slope stability of an unsaturated embankment with and without natural pore water salinity subjected to rainfall infiltration [J]. Rock and Soil Mechanics, 2022, 43(8): 2136-2148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!