Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (7): 1995-2003.doi: 10.16285/j.rsm.2020.1763

• Geotechnical Engineering • Previous Articles     Next Articles

Analysis of laterally-loaded piles embedded in multi-layered soils using efficient finite-element method

ZHAO Hai-peng1, LI Xue-you1, 2, WAN Jian-hong1, ZHENG Xiang-zhi1, LIU Si-wei3   

  1. 1. School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China; 2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China; 3. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • Received:2020-11-26 Revised:2021-04-07 Online:2021-07-12 Published:2021-07-19
  • Supported by:
    This work was supported by the National Science Foundation of China (51909288) and the Guangdong Provincial Department of Science and Technology (2019ZT08G090).

Abstract: Mechanical analysis of laterally-loaded piles embedded in multi-layered soils is a critical step in design. Traditional finite-element method may have deficiency in accuracy and efficiency when applied to analyze this problem. An efficient finite-element method is proposed in this paper. A “pile element” that adopts the distributed “soil springs” along the element length to reflect the nonlinear behaviors of the pile-soil interactions is developed in this method. The dominant feature of the pile element is the direct integration of soil properties into the element formulation, namely, a pile element comprises both the pile and soil properties. The pile element formulation in multi-layered soils is derived, and the Gauss-Legendre method is introduced to simplify the total potential energy summation process. The element stiffness matrix is derived and applied to Newton-Raphson incremental iterative numerical process, and the secant relations are used to minimize the cumulative errors during the numerical iteration process. Besides, the updated Lagrangian method is employed to account for the large deformation issue. Results show that: 1) the proposed method can provide predictions that match well with both the theoretical solutions and field test data; 2) using the pile element model can substantially reduce the number of elements and calculation time compared with those of the discrete element model, and thus significantly improve the calculation efficiency.

Key words: laterally-loaded piles, finite element method, pile-soil interaction, pile element, multi-layered soils

CLC Number: 

  • TU 473.1
[1] ZHANG Xian-cheng, CHI Bao-tao, YU Xian-ze, GUO Qian-jian, YUAN Wei, ZHANG Yao-ming, . Unstructured mesh generation and fracture damage analysis in the implementation of peridynamics-based finite element method [J]. Rock and Soil Mechanics, 2025, 46(S1): 467-476.
[2] ZHANG Chi, DENG Long-chuan, ZHUANG Qian-wei, LI Xiao-zhao, WANG Qiu-ping, QIAO Liang, . Experimental and numerical investigations on rotary rock-breaking force and efficiency of disc cutter [J]. Rock and Soil Mechanics, 2025, 46(9): 2995-3006.
[3] CHEN Deng-hong, ZHANG Xin-han, LIU Yun-hui, HU Hao-wen, LIU Yun-long, LIANG Yu-xiang, . Nonlinear seismic response analysis of high arch dam-irregular foundation- reservoir water system based on octree scaled boundary finite element method [J]. Rock and Soil Mechanics, 2025, 46(8): 2586-2599.
[4] KE Wen-hai, YANG Wen-hai, LI Yuan, WU Lei, . Dynamic response of pile foundation in slope topography under SH wave [J]. Rock and Soil Mechanics, 2025, 46(5): 1545-1544.
[5] ZHANG Jin, LI Shu-heng, ZHU Qi-zhi, SHI Ling-ling, SHAO Jian-fu, . Short- and long-term rock constitutive model and gray sandstone deformation prediction based on deep learning method [J]. Rock and Soil Mechanics, 2025, 46(1): 289-302.
[6] HAN Li-bing, LI Wen-tao, WEI Chang-fu, . Application of adaptive time step method to unsaturated seepage flow [J]. Rock and Soil Mechanics, 2024, 45(S1): 685-693.
[7] LI Xiao-long, ZHAO Ze-xin, CHEN Kun-yang, MA Peng, CHEN Can, ZHONG Yan-hui, ZHANG Bei, . Simulation study on polymer compaction fracture grouting considering chemical reactions [J]. Rock and Soil Mechanics, 2024, 45(9): 2823-2838.
[8] DAI Bei-bing, YUAN Xin, ZHOU Xi-wen, LIU Feng-tao, . Upper bound limit analysis using smoothed finite element method considering discontinuous velocity field [J]. Rock and Soil Mechanics, 2024, 45(9): 2849-2858.
[9] PAN Hong, XU Jia-xian, LUO Guan-yong, PENG Si-ge, CAO Hong, . Simplified analysis method of singular point source in three-dimensional finite element calculation [J]. Rock and Soil Mechanics, 2024, 45(8): 2483-2491.
[10] ZHOU Pan, LI Jing-pei, LI Pan-pan, LIU Geng-yun, ZHANG Chao-zhe, . Prediction method for load-settlement response of a single pile in sand based on an interface constitutive model [J]. Rock and Soil Mechanics, 2024, 45(6): 1686-1698.
[11] MAO Jia, YU Jian-kun, SHAO Lin-yu, ZHAO Lan-hao. Discrete element method based on three dimensional deformable spheropolyhedra [J]. Rock and Soil Mechanics, 2024, 45(3): 908-916.
[12] WANG Gang, DENG Ze-zhi, JIN Wei, ZHANG Jian-min, . Staggered finite element and finite volume method for suffusion simulation based on local conservation [J]. Rock and Soil Mechanics, 2024, 45(3): 917-926.
[13] THENDAR Yoshua, LIM Aswin. Investigation into RFD system for deep excavation considering diaphragm wall joints [J]. Rock and Soil Mechanics, 2024, 45(12): 3717-3727.
[14] HUANG Chao, QIAN Jian-gu, . Dynamic response of storage and drainage tunnel in saturated ground under water hammer [J]. Rock and Soil Mechanics, 2024, 45(12): 3802-3814.
[15] FENG Song, ZHENG Ying-ren, GAO Hong, . A new Drucker-Prager criterion for geomaterials under conventional triaxial stress condition [J]. Rock and Soil Mechanics, 2024, 45(10): 2919-2928.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!