Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (8): 2069-2077.doi: 10.16285/j.rsm.2021.0110

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on the mechanical characteristics of granite failure process under true triaxial stress path

LIU Jie1, ZHANG Li-ming1, 2, CONG Yu1, 2, WANG Zai-quan1, 2   

  1. 1. School of Science, Qingdao University of Technology, Qingdao, Shandong 266033, China; 2. Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao University of Technology, Qingdao, Shandong 266033, China
  • Received:2021-01-15 Revised:2021-03-10 Online:2021-08-11 Published:2021-08-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (47102322) and the Natural Science Foundation in Shandong Province (ZR2020ME099, ZR2020MD111).

Abstract: The true triaxial loading and unloading tests were conducted to obtain the characteristic stress, failure mode and energy evolution characteristics of the granite in an underground cavern. Results show that under the true triaxial loading and unloading stress paths, the failure modes of granite are both tensile and shear composite failure, and characteristics of high damage stress and brittleness are obviously observed. A new brittleness index is proposed to evaluate rock brittleness by using volumetric strain curve. The brittleness of granite under unloading condition is higher than loading condition. In the true triaxial loading test, the change trend of total energy with axial strain goes through three stages: slow increase, rapid increase, and steady increase. In the true triaxial unloading test, the dissipated energy increases rapidly at the moment of unloading, and its proportion in the energy distribution increases, which becomes the main energy consumption. The energy dissipation value of the granite in the loading test is obviously greater than that in the unloading test. It indicates that more energy is required for samples under the loading path to cause damage. More elastic strain energy can be released under the unloading path, which is more dangerous than the loading path.

Key words: true triaxial test, mechanical properties, energy evolution

CLC Number: 

  • TU 452
[1] WU Jun, MIN Yi-fan, ZHENG Xi-yao, HAN Chen, NIU Fu-jun, ZHU Bao-lin, . Compressive deformation properties of recycled fine aggregates prepared by geopolymer-stabilized sludge method [J]. Rock and Soil Mechanics, 2025, 46(S1): 159-170.
[2] ZHANG Chun-rui, JI Hong-guang, FU Zhen, ZHANG Yue-zheng, SONG Yu, TIAN Zhu-hua, FAN Wen-bo, . Influence of dolomite on the physical and mechanical properties of siltstone [J]. Rock and Soil Mechanics, 2025, 46(9): 2661-2675.
[3] QU Jun-tong, SHI Qi-zhuang, GUO Ying-jie, ZHANG Xiang, LIU Yi, JIANG De-yang. Characteristics and damage mechanisms of ice deposits under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2025, 46(9): 2859-2872.
[4] XU Wei-wei, XIE Zun-dang, FU Zhong-zhi, MI Zhan-kuan, . Research and application on true triaxial test of coarse-grained soil using Shen’s elastoplastic model [J]. Rock and Soil Mechanics, 2025, 46(8): 2559-2572.
[5] ZHANG Pei-sen, WANG Hong-wei, HONG Huang, XU Da-qiang, CHEN Zeng-bao, DENG Yun-chi, LIANG Zhan, LI Jin-kun, CHEN Wen-hao, CUI Qian, . Mechanical properties and energy evolution law of deep-buried sandstone under seepage-mining stress coupling [J]. Rock and Soil Mechanics, 2025, 46(7): 1997-2010.
[6] HU Feng-hui, FANG Xiang-wei, SHEN Chun-ni, WANG Chun-yan, SHAO Sheng-jun, . Experiment on particle breakage, strength, and dilatancy of coral sand under true triaxial conditions [J]. Rock and Soil Mechanics, 2025, 46(7): 2147-2159.
[7] ZHENG Shu-wen, LIU Song-yu, LI Di, TONG Li-yuan, WU Kai, . Experimental study on mechanical properties of expansive soil-based lightweight foam soil [J]. Rock and Soil Mechanics, 2025, 46(5): 1455-1465.
[8] ZHANG Tao-yi, WANG Jia-quan, LIN Zhi-nan, TANG Yi, . Influences of fines content on strength deterioration and static shear characteristics of gravelly soil subgrade [J]. Rock and Soil Mechanics, 2025, 46(4): 1141-1152.
[9] TANG Xian-xi, ZHANG Xu-jun, LI Hao-jie, . Evaluation of mechanical properties and analysis of solidification principles of loess solidified with steel slag-coal gangue geopolymer [J]. Rock and Soil Mechanics, 2025, 46(4): 1205-1214.
[10] SONG Yong-jun, LU Yun-long, WANG Shuang-long, XIE Li-jun, CAO Jing-hui, AN Xu-chen, . Evolution characteristics of unfrozen water content and its influence on mechanical properties of rock during freeze-thaw process [J]. Rock and Soil Mechanics, 2025, 46(4): 1049-1059.
[11] WANG Ze-chi, SHAO Shuai, SHAO Sheng-jun, WU Hao, ZHANG Bin, ZHANG Shao-ying. Wetting deformation characteristics of undisturbed loess under true triaxial stress-water path [J]. Rock and Soil Mechanics, 2025, 46(11): 3451-3461.
[12] TAO Gao-liang, ZHOU Heng-jie, XIAO Heng-lin, ZHOU Hong-yu, . Mechanical and vegetative properties and anti-erosion effect of a new ecological slope protection material [J]. Rock and Soil Mechanics, 2025, 46(10): 3018-3032.
[13] JIANG jian-qing, LUO Min-hua, HU Shi-hong, LIU Zhi-hao, . True triaxial test study on the influence of intermittent joint occurrence on sandstone failure characteristics [J]. Rock and Soil Mechanics, 2025, 46(10): 3077-3092.
[14] ZHANG Jin, LI Shu-heng, ZHU Qi-zhi, SHI Ling-ling, SHAO Jian-fu, . Short- and long-term rock constitutive model and gray sandstone deformation prediction based on deep learning method [J]. Rock and Soil Mechanics, 2025, 46(1): 289-302.
[15] YANG Ke, YU Xiang, HE Xiang, HOU Yong-qiang, ZHANG Lian-fu, . Energy evolution and damage characteristics of gangue cemented backfill in different water content states [J]. Rock and Soil Mechanics, 2025, 46(1): 26-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!