Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (8): 2225-2238.doi: 10.16285/j.rsm.2020.1732

• Geotechnical Engineering • Previous Articles     Next Articles

Analysis of mechanism of rock burst and law of mining induced events in graben structural area

WU Zhen-hua1, 2, PAN Peng-zhi1, 2, PAN Jun-feng3, WANG Zhao-feng1, 2, GAO Jia-ming3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. CCTEG Coal Mining Research Institute, Beijing 100013, China
  • Received:2020-10-10 Revised:2021-03-13 Online:2021-08-11 Published:2021-08-16
  • Supported by:
    This work was supported by the National Key R&D Program of China (2017YFC0804203).

Abstract: Aiming at the disaster of rock burst in graben structural area of coal mine, based on the particularity of graben structure and the occurrence characteristics of overburden rock, the movement characteristics of overburden and stress evolution law of coal and rock mass in the graben structural region are analyzed and the corresponding mechanical model is established by means of field investigation, theoretical analysis and numerical simulation. The mechanism of rock burst in the graben structural region is consequently studied. At the same time, the evolution characteristics of microseismic energy and frequency before and after rock burst are analyzed, and the time sequence of microseismic precursory information of rock burst in graben structural region is obtained. The results show that: the sliding subsidence of wedge is closely related to the width of goaf. The existence of goaf in graben structural area will break the stable state of wedge and lead to more severe stability conditions. The local slip and dislocation of FD6 and FD8 faults lead to wedge sliding subsidence, and the hanging roof structure of graben structural area also has corresponding extrusion effect on the undeveloped coal mass. The same action provides high static stress conditions for the occurrence of rock burst, and the breaking of suspended roof structure provides dynamic load disturbance conditions for the occurrence of rock burst. The joint action of static load and dynamic load results in the upper drift and triple entry in the graben structure. The energy and frequency of microseismic show obvious deviation before the impact, and the daily average energy of microseismic is measured. There are obvious sudden drop and sudden rise. The anti-scour technology of “chain-brokening and consumption-increasing” is proposed based on the analysis results and field practice. It provides some theoretical reference value for occurrence mechanism, early warning and prevention and control of rock burst on working face in graben structural area.

Key words: graben structure, rock burst, mechanical model, microseismic, chain-brokening and consumption-increasing

CLC Number: 

  • TU 456
[1] ZHENG Pei-xiao, PU Cheng-zhi, XIE Guo-sen, LUO Yong, LI Guang-yue, . Automatic identification of mine microseismic signals based on feature selection [J]. Rock and Soil Mechanics, 2025, 46(7): 2199-2210.
[2] HU Wei, ZENG Pan-yu, WANG Hui, LIU Shun-kai, CHEN Qiu-nan, PUIG DAMIANS I, . Calculation method of uplift capacity of horizontal strip anchor plate in cohesive soil foundation [J]. Rock and Soil Mechanics, 2025, 46(6): 1731-1744.
[3] WANG Xiao-min, QU Jun-li, SHI Ya-ping. A microseismic P-wave arrival time picking method based on variance surge effect of autoregressive model [J]. Rock and Soil Mechanics, 2025, 46(4): 1335-1342.
[4] ZHOU Guang-yuan, GAN Fei, ZHENG Gang, ZHOU Hai-zuo, WANG Hong, BI Jing, LIU Biao, ZHANG Yuan-yin, . Calculation method of negative skin friction for end-bearing piles based on soil deformation [J]. Rock and Soil Mechanics, 2025, 46(3): 930-942.
[5] TAN Jian, LIU Xue-sheng, GENG Yan-feng, FU Biao, WANG Hong-lei, XU Ke, . Development and preliminary application of an intelligent testing platform for drilling and testing of rockburst prevention drilling rig [J]. Rock and Soil Mechanics, 2025, 46(2): 673-684.
[6] XU Dong, GAO Ming-shi, ZHENG Rui, . Mechanism and control technology of rock burst induced by thick and hard roof breaking in simultaneous mining working face [J]. Rock and Soil Mechanics, 2025, 46(10): 3219-3233.
[7] SUN Jia-hao, WANG Wen-jie, XIE Lian-ku, . Short-term rockburst prediction model based on microseismic monitoring and probability optimization naive Bayes [J]. Rock and Soil Mechanics, 2024, 45(6): 1884-1894.
[8] JIA Bao-xin, ZHENG Ke-nan, ZHOU Lin-li, . Energy attenuation patterns of microseismic signals in the "three zones" of goaf based on variational mode decomposition [J]. Rock and Soil Mechanics, 2024, 45(4): 991-1002.
[9] GAO Ming-shi, YU Xin, XU Dong, HE Yong-liang, ZHAO Shi-fan, . Graded support of rock burst roadway based on balance theory of impact energy and absorbed energy [J]. Rock and Soil Mechanics, 2024, 45(1): 38-48.
[10] HU Wei, WANG Hui, YAO Chen, HAO Dong-xue, SHI Dan-da, . Three-dimensional unified mechanical model and calculation method of uplift capacity of horizontal rectangular anchor plate in the whole region in sand [J]. Rock and Soil Mechanics, 2023, 44(6): 1811-1825.
[11] WANG Shu-wen, JU Wen-jun, ZHANG Chun-hui, SU Shi-jie, LU Chuang, . Stress jumping of elastic-brittle circular coal roadway and prediction model of rock burst [J]. Rock and Soil Mechanics, 2023, 44(3): 873-883.
[12] WANG Bei-fang, JIANG Jia-qi, LIU Xue-sheng, LIANG Bing, ZHANG Jing. Analysis and application of sheared and fallen roof structure during shallowly buried fully mechanized mining under thick loose bed and thin base rock [J]. Rock and Soil Mechanics, 2023, 44(10): 3011-3021.
[13] LUO Dan-ni, LU Si-hang, SU Guo-shao, TAO Hong-hui, . Experimental study on rock burst of granite with prefabricated single crack under true-triaxial stress condition with a free face [J]. Rock and Soil Mechanics, 2023, 44(1): 75-87.
[14] CHEN Guang-bo, ZHANG Jun-wen, HE Yong-liang, ZHANG Guo-hua, LI Tan, . Derivation of pre-peak energy distribution formula and energy accumulation tests of coal-rock combined body [J]. Rock and Soil Mechanics, 2022, 43(S2): 130-143.
[15] YANG Xiao-feng, LU Zu-de, CHEN Cong-xin, SUN Chao-yi, LIU Xuan-ting, . Analysis of mechanical model of sliding-bending failure in bedding rock slopes with slab-rent structure [J]. Rock and Soil Mechanics, 2022, 43(S1): 258-266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!