Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (9): 2421-2430.doi: 10.16285/j.rsm.2021.1925

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Mechanical properties of slag-fly ash based geopolymer stabilized sandy soil

ZHANG Jin-jin1, 2, LI Bo1, 2, YU Chuang1, ZHANG Mao-yu3   

  1. 1. College of Architecture and Civil Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China; 2. Wenzhou Key Laboratory of Intelligent Lifeline Protection and Emergency Technology for Resilient City, Wenzhou Institute of Technology, Wenzhou, Zhejiang 325035, China; 3. School of Civil Engineering and Architecture, Taizhou University, Taizhou, Zhejiang 318000, China
  • Received:2021-11-13 Revised:2022-04-28 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51978531) and the Public Welfare Project of Zhejiang Province (LGG22E080006).

Abstract:

Silicate cement as a conventional soil curing agent has problems of high energy consumption and high emissions, and researchers have been seeking a more economical and environmentally friendly alternative to cement. In this study, geopolymers based on ground granulated blast-furnace slag (GGBS) and fly ash (FA) were used to reinforce sandy soils, and the effects of different factors on the mechanical properties of geopolymer stabilized sandy soils were investigated by adjusting the type and ratio of exciter, slag-fly ash ratio, water-cement ratio, and curing conditions. The specimens were studied in depth by unconfined compressive strength (UCS) test, electron computed tomography (CT) analysis, and scanning electron microscopy (SEM). The results show that the GGBS-FA-based geopolymer can effectively improve the mechanical properties of the sandy soil; the reinforcement effect of the composite exciter is better than that of the single-component exciter; the low temperature does not significantly reduce the final mechanical properties of the geopolymer stabilized sandy soil, but only delays the polymerization reaction and structure formation; the alkaline environment promotes the strength of the geopolymer stabilized sandy soil; the acidic environment and prolonged exposure to air reduce the strength of geopolymer stabilized sandy soils.

Key words: geopolymer, stabilized sandy soil, unconfined compressive strength (UCS), microstructure

CLC Number: 

  • TU411
[1] ZHI Bin, WEI Yuan-jun, WANG Pan, ZHANG Qian, LIU Cun-li, REN Hui-ming, . Correlation mechanism between macroscopic strength and microstructure of undisturbed loess containing Na2SO4 salt under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2025, 46(S1): 106-120.
[2] WU Jun, MIN Yi-fan, ZHENG Xi-yao, HAN Chen, NIU Fu-jun, ZHU Bao-lin, . Compressive deformation properties of recycled fine aggregates prepared by geopolymer-stabilized sludge method [J]. Rock and Soil Mechanics, 2025, 46(S1): 159-170.
[3] ZHANG Xing-wen, CAO Jing, LEI Shu-yu, LI Yu-hong, CHENG Yun, ZHANG Ning-rui. Effect of fulvic acid environment on the structure and permeability of cement-soil containing humic acid [J]. Rock and Soil Mechanics, 2025, 46(S1): 249-261.
[4] LIU Wen-lin, E Tian-long, FENG Yang-zhou, NIU Song-ying, ZHANG Zi-tang, SUN Yi, CHEN Hong-xin, . Basic properties and freeze-thaw durability of nano-modified geopolymer cutoff wall materials [J]. Rock and Soil Mechanics, 2025, 46(7): 2039-2048.
[5] TANG Xian-xi, ZHANG Xu-jun, LI Hao-jie, . Evaluation of mechanical properties and analysis of solidification principles of loess solidified with steel slag-coal gangue geopolymer [J]. Rock and Soil Mechanics, 2025, 46(4): 1205-1214.
[6] XUE Qin-pei, CHEN Hong-xin, FENG Shi-jin, LIU Xiao-xuan, XIE Wei, . Evolution of permeability characteristics and micro-mechanism of geopolymer cutoff wall materials under dry-wet cycling [J]. Rock and Soil Mechanics, 2025, 46(3): 811-820.
[7] JIANG Xin-yu, ZHENG Xi-yao, WU Jun, YANG Ai-wu, LI Bo, . Acid resistance performance of geopolymer-stabilized soft clay under HNO3 and H2SO4 acid erosion [J]. Rock and Soil Mechanics, 2025, 46(3): 851-866.
[8] HE Yuan-yuan, PENG Qi-lan, WANG Li, WANG Shi-mei, NIE Lei, XU Yan, LYU Yan, CHEN Yong, ZHANG Xian-wei. Investigating pore characteristics and permeability of seasonally frozen turfy soil using multiple micro-test methods [J]. Rock and Soil Mechanics, 2025, 46(1): 110-122.
[9] CHENG Xin, JIANG Wen-hao, HUANG Xiao, LI Shuang, WANG Ying-fu, LI Jiang-shan, . Engineering properties and microstructural evolution of self-hardening vertical barrier materials under the influence of Cr(VI) contaminated solution [J]. Rock and Soil Mechanics, 2024, 45(S1): 225-238.
[10] SHEN Jun, CHENG Yin, JIN Xiao-ping, SI Ji-ping, YANG Tian-jun, YU Hao, YU Kun, . Experimental study on performance of waste slag based geopolymer stabilized silt clay [J]. Rock and Soil Mechanics, 2024, 45(S1): 147-156.
[11] WANG Li-yan, JIANG Fei, ZHUANG Hai-yang, WANG Bing-hui, ZHANG Lei, LI Ming, . Dynamic characteristics and microscopic analysis of rubber-steel slag filler considering the influence of hydration period [J]. Rock and Soil Mechanics, 2024, 45(S1): 53-62.
[12] ZHANG Ke, GUAN Shi-hao, QI Fei-fei, XU Yi, JIN Ke-sheng, . Macromechanical properties and microstructure of sandstone under scouring effect [J]. Rock and Soil Mechanics, 2024, 45(7): 1929-1938.
[13] CHEN Kang, LIU Xian-feng, YUAN Sheng-yang, Ma Jie, CHEN Yi-han, JIANG Guan-lu, . Effect of water content on stiffness degradation and microstructure of red mudstone fill material [J]. Rock and Soil Mechanics, 2024, 45(7): 1976-1986.
[14] FAN Pei-pei, ZHANG Ling-kai, DING Xu-sheng, . Deterioration law of shear and compression characteristics of collapsible loess under dry-wet and freeze-thaw cycles [J]. Rock and Soil Mechanics, 2024, 45(7): 2050-2060.
[15] ZHENG Yi-wen, WU Jun, YANG Ai-wu, LI Bo, GU Long, . Feasibility study on the one-part geopolymer activated by solid sodium silicate for soft soil solidification [J]. Rock and Soil Mechanics, 2024, 45(7): 2072-2084.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!