Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (9): 2504-2514.doi: 10.16285/j.rsm.2022.0011

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of impermeability of sandstone uranium ore by microbial cementation

HE Gui-cheng, XIE Yuan-hui, LI Yong-mei, LI Chun-guang, TANG Meng-yuan, ZHANG Zhi-jun, WU Ling-ling   

  1. School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
  • Received:2022-01-03 Revised:2022-07-04 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51974163), the National Key Research and Development Program (2021YFC2902104), the Natural Science Foundation of Hunan Province (2019JJ50496), the Research Foundation of Education Bureau of Hunan Province (20B494) and the Research Foundation of Education Bureau of Hunan Province (18C0460).

Abstract: The pollutants produced by in-situ leaching of uranium ore pose a hazard to groundwater resources through osmotic migration, which has significantly restricted the development of this leaching method. Microbial cementation can effectively reduce the permeability of sandstone uranium ore and prevent the pollutants migrating into the groundwater in the vicinity of the mining area. Therefore, in this study, sporosarcina pasteurii was chosen and tested for acid resistance. The permeability coefficients of the uranium ore sand cemented in condition of different concentrations of cementing solution, volume ratio of bacterial solution and cementing solution as well as grouting rounds were measured using a self-made experimental setup, then, the best value of these parameters was determined. In addition, the microstructure and mineral composition of uranium ore sand before and after bio-cementation were observed using scanning electron microscope (SEM) and X-ray diffraction spectroscopy (XRD) in order to explore the mechanism of the impermeability by bio-cementation. The results show that sporosarcina pasteurii still grows and reproduces well with high urease activity at pH value of 4, indicating that it can adapt to the acidic uranium ore sand. The formation of calcium carbonate can be promoted by increasing the concentration of cementing solution and the volume ratio of bacterial solution and cementing solution within a certain range, and the best cementing solution concentration and volume ratio are 1 mol/L and 1:3, respectively. The permeability reduction ratio of uranium ore sand reaches 95.33% after 7 rounds of bio-grouting. The permeability coefficient of uranium ore sand decreases with increasing the grouting round. The permeability coefficient of uranium ore sand is reduced by up to 99.75% after 11 rounds of bio-grouting, with a value of 2.8×10−5 cm/s. Calcite is the main crystal form of deposited calcium carbonate. It blocks the intergranular pore and cements the sand particles together, which is the main reason for the reduced permeability coefficient of uranium ore sand. The impermeability mechanism of uranium ore sand cemented by microbial induced calcium carbonate precipitation provides important theoretical guidance for the control and reduction of groundwater pollution.

Key words: sandstone uranium ore, in-situ leaching of uranium ore, microbial mineralization, permeability coefficient, impermeability

CLC Number: 

  • O 319.56
[1] ZHANG Xing-wen, CAO Jing, LEI Shu-yu, LI Yu-hong, CHENG Yun, ZHANG Ning-rui. Effect of fulvic acid environment on the structure and permeability of cement-soil containing humic acid [J]. Rock and Soil Mechanics, 2025, 46(S1): 249-261.
[2] CAO Rui-dong, LIU Si-hong, TIAN Jin-bo, LU Yang, ZHANG Yong-gan, LI Fan, . Experimental study and predictive model for seepage characteristics of geotextiles for soilbags considering tensile deformation [J]. Rock and Soil Mechanics, 2025, 46(9): 2711-2720.
[3] ZHENG Si-wei, HU Ming-jian, HUO Yu-long, . Factors affecting permeability of calcareous sands and predictive models [J]. Rock and Soil Mechanics, 2024, 45(S1): 217-224.
[4] CUI Yun-liang, PAN Fang-ran, GAO Xuan-yuan, JIN Zi-yuan, . A calculation method of permeability coefficient of clogging zone in vacuum preloading of waste slurry [J]. Rock and Soil Mechanics, 2024, 45(7): 2085-2093.
[5] WANG Xin-zhi, HUANG Peng, LEI Xue-wen, WEN Dong-sheng, DING Hao-zhen, LIU Kai-cheng, . Permeability test of zinc sulfate bonded coral sand and discussion on its engineering application [J]. Rock and Soil Mechanics, 2024, 45(7): 2094-2104.
[6] LI Pin-liang, XU Qiang, LIU Jia-liang, HE Pan, JI Xu, CHEN Wan-lin, PENG Da-lei, . Experimental study on the micromechanism of salt influence on the permeability of remolded loess [J]. Rock and Soil Mechanics, 2023, 44(S1): 504-512.
[7] WU Guang-shui, TIAN Hui-hui, HAO Feng-fu, WANG Shu-qi, YANG Wen-zhou, ZHU Ting-mei, . Rapid prediction of the permeability coefficient for soil of different dry densities with NMR T2 distribution [J]. Rock and Soil Mechanics, 2023, 44(S1): 513-520.
[8] HE Tao, , MAO Hai-tao, , ZHANG Chao, GU Yi. Evolution of perforated cracks in cohesive soil under muddy water seepage [J]. Rock and Soil Mechanics, 2023, 44(9): 2628-2638.
[9] ZHANG Yu, HE Xiang, LU Hua-ming, MA Guo-liang, LIU Han-long, XIAO Yang, . Experimental study on sand anti-seepage by microorganism-bentonite combined mineralization [J]. Rock and Soil Mechanics, 2023, 44(8): 2337-2349.
[10] HE Gui-cheng, TANG Meng-yuan, LI Yong-mei, LI Chun-guang, ZHANG Zhi-jun, WU Ling-ling. Experiment on the impermeability of uranium tailings treated by microbial induced calcium carbonate precipitation combined with modified jute fiber [J]. Rock and Soil Mechanics, 2023, 44(12): 3459-3470.
[11] ZHENG Si-wei, HU Ming-jian, HUO Yu-long, LI Yu, . Analysis of factors affecting permeability of calcareous sand in salt solution environment [J]. Rock and Soil Mechanics, 2023, 44(12): 3522-3530.
[12] PAN Zhen-hui, XIAO Tao, LI Ping, . Influences of compaction degree and molding water content on microstructure and hydraulic characteristics of compacted loess [J]. Rock and Soil Mechanics, 2022, 43(S1): 357-366.
[13] ZHANG Xiao-yan, ZHANG Yi, ZHANG Jin-xun, WEI Kai-yuan, WANG Ning, . Experimental study on permeability and consolidation of calcareous sand mixed with rubber fiber [J]. Rock and Soil Mechanics, 2022, 43(8): 2115-2122.
[14] WANG Hai-man, NI Wan-kui. Prediction model of saturated/unsaturated permeability coefficient of compacted loess with different dry densities [J]. Rock and Soil Mechanics, 2022, 43(3): 729-736.
[15] XIONG Yu, DENG Hua-feng, LI Jian-lin, CHENG Lei, ZHU Wen-xi. Experimental study of MICP-treated sand enhanced by pozzolan [J]. Rock and Soil Mechanics, 2022, 43(12): 3403-3415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!