Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (S2): 155-162.doi: 10.16285/j.rsm.2021.0589

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on thermal conductivity of MX80 bentonite under alkali-thermal environment

ZENG Zhao-tian1, LIANG Zhen1, SHAO Jie-sheng1, XU Yun-shan1, LÜ Hai-bo1, 2, PAN Bin1   

  1. 1. Guangxi Key Laboratory of Geotechnical Mechanics and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China; 2. School of Architecture and Electrical Engineering, Hezhou University, Hezhou, Guangxi 542899, China
  • Received:2021-04-18 Revised:2021-07-13 Online:2022-10-10 Published:2022-10-03
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41962014, 42167020) and the National Natural Science Foundation of Guangxi (2018GXNSFAA138182, 2018GXNSFDA281038).

Abstract:

To analyze the effect of various factors such as temperature, strength of alkali solution and dry density on the thermal conductivity of bentonite, thermal conductivity of MX80 bentonite in alkali-thermal environment was measured by a thermal probe method. Meanwhile, the X-ray diffraction (XRD) and scanning electron microscopy (SEM) tests were carried out on selected samples to reveal the micro-mechanism of thermal conductivity evolution of MX80 bentonite under alkaline and thermal environment. The results show that the thermal conductivity of MX80 bentonite increases with the increase of alkali solution content and dry density. The thermal conductivity of bentonite increases with the increase of temperature under different content conditions, and the higher alkali solution content is, the more significant the temperature effect of thermal conductivity is. When the dry density is small, the influence of thermal conductivity λ of bentonite increases with the increase of temperature. The main reason is that temperature facilitates the latent heat transfer of water vapor inside the sample. At the same dry density and temperature, the thermal conductivity decreases with the increase of pH value, the higher the pH value is, the greater the decrease range of λ is. The main reason is that the strong alkali solution erodes the montmorillonite and quartz of bentonite, increases the porosity of bentonite, thereby reduces the thermal conductivity of bentonite, which is consistent with the XRD and SEM image results of the tested samples.

Key words: bentonite, alkali-thermal environment, thermal conductivity, pore characteristics, scanning electron microscope(SEM)

CLC Number: 

  • TU411
[1] WU Zi-long, YU Tao, YAN Chao, DENG Yong-feng, HU Guang-qing, GAO Yu-hang, WANG Zhang, WANG Li, . Analysis of loess heavy metal pollution in Shaanxi Province and a preliminary study on treatment of loess/bentonite cutoff walls [J]. Rock and Soil Mechanics, 2025, 46(9): 2738-2748.
[2] TAN Yun-zhi, WU Ke-yu, MING Hua-jun, SUN De-an, . Vibro-compacted properties of granule bentonite and its swelling behavior under constant stiffness constraint [J]. Rock and Soil Mechanics, 2025, 46(8): 2399-2408.
[3] CHENG Xin, JIANG Wen-hao, HUANG Xiao, LI Shuang, WANG Ying-fu, LI Jiang-shan, . Engineering properties and microstructural evolution of self-hardening vertical barrier materials under the influence of Cr(VI) contaminated solution [J]. Rock and Soil Mechanics, 2024, 45(S1): 225-238.
[4] HAO Feng-fu, MA Tian-tian, YU Hai-wen, WEI Chang-fu, TIAN Hui-hui, YI Pan-pan, . Experimental study of the influence of cation exchange capacity on hydration in interlayers of bentonite [J]. Rock and Soil Mechanics, 2024, 45(9): 2611-2620.
[5] CHEN Bao, XIANG Ping, DENG Rong-sheng。. Diffusion modeling of bentonite colloids in fractures of repository surrounding rocks [J]. Rock and Soil Mechanics, 2024, 45(2): 433-442.
[6] WANG Shu-ying, ZHONG Jia-zheng, NI Zhun-lin, ZHENG Xiang-cou, . Shear behavior of slurry-foam-conditioned poorly graded sand under pressure [J]. Rock and Soil Mechanics, 2024, 45(10): 2879-2888.
[7] PENG Yu, ZHANG Hu-yuan, ZHOU Guang-ping, TAN Yu, . Research on the alcohol method to adjust water content of compacted bentonite as buffer/backfill material [J]. Rock and Soil Mechanics, 2024, 45(1): 235-244.
[8] GUI Yue, XIE Zheng-peng, GAO Yu-feng, . Influence and mechanism of organic matter on thermal conductivity of clay soil [J]. Rock and Soil Mechanics, 2023, 44(S1): 154-162.
[9] ZENG Zhao-tian, ZHANG Han-bin, SHAO Jie-sheng, CHE Dong-ze, LÜ Hai-bo, LIANG Zhen, . Microscopic analysis of high-temperature aging time effect in MX-80 bentonite [J]. Rock and Soil Mechanics, 2023, 44(S1): 145-153.
[10] YU Hai-wen, , MA Tian-tian, , WEI Chang-fu, , HAO Feng-fu. Effects of cation exchange capacity and salt solution concentration on swelling deformation of bentonite [J]. Rock and Soil Mechanics, 2023, 44(9): 2603-2610.
[11] ZHANG Yu, HE Xiang, LU Hua-ming, MA Guo-liang, LIU Han-long, XIAO Yang, . Experimental study on sand anti-seepage by microorganism-bentonite combined mineralization [J]. Rock and Soil Mechanics, 2023, 44(8): 2337-2349.
[12] HUANG Xian-wen, YAO Zhi-shu, CAI Hai-bing, LI Kai-qi, TANG Chu-xuan. Prediction of thermal conductivity of unsaturated frozen soil based on microstructure remodeling [J]. Rock and Soil Mechanics, 2023, 44(1): 193-205.
[13] ZENG Zhao-tian, LIANG Zhen, SUN Ling-yun, FU Hui-li, FAN Li-yun, PAN Bin, YU Hai-hao, . Experimental study on the influence factors of thermal conductivity of cement-bonded calcareous sand [J]. Rock and Soil Mechanics, 2022, 43(S1): 88-96.
[14] OU Xiao-duo, GAN Yu, PAN Xin, JIANG Jie, QIN Ying-hong, . Experimental study on thermal conductivity of remodel expansive rock and its influence factors [J]. Rock and Soil Mechanics, 2022, 43(S1): 367-374.
[15] JIN Zong-chuan, WANG Xue-qing, WU Xiao-ming, PENG Yun, . Testing and analysis of soil thermal parameters and their influencing factors [J]. Rock and Soil Mechanics, 2022, 43(5): 1335-1340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!