Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (10): 2735-2743.doi: 10.16285/j.rsm.2021.2080

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Three-dimensional stability limit analysis of cracked loess slopes

ZHU Xue-liang1, SHAO Sheng-jun1, 2, SHEN Xiao-jun3, SHAO Shuai4, LIU Xiao-kang1   

  1. 1. Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China; 2. Shaanxi Key Laboratory of Loess Mechanics and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China; 3. Hanjiang to Weihe River Valley Water Diversion Project Construction Co., Ltd., Xi’an, Shaanxi 710000, China; 4. Department of Architecture and Urban Planning, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
  • Received:2021-12-09 Revised:2022-06-22 Online:2022-10-19 Published:2022-10-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52108342), the Shaanxi Province Natural Science Foundation Research Program–Hanjiang-Weihe Joint Fund Project (2019JLP-21, 2019JLZ-13), the Ph.D. Launch Fund of Xi’an University of Technology (107-451122001) and the Shaanxi Water Science and Technology Program (2021slkj-12).

Abstract: The development of vertical cracks in loess slopes often affects slope stability. Compared with the plane strain mechanism, the slope stability analysis under the three-dimensional (3D) failure mechanism is closer to the actual slope instability. Based on the upper bound method of plastic limit analysis, different failure mechanisms (face failure, toe failure and base failure) of 3D loess slope with pre-existing cracks are considered, the energy balance equation and its dimensionless critical height expression γH/c are established, and the upper bound solution of critical height is obtained by random search method. The effects of constraint width, slope angle, internal friction angle and crack depth on the critical height of 3D vertical cracked loess slopes are analyzed. The results indicate that for the toe failure mechanism, the critical height decreases with the increase of crack depth, and the increase in crack depth no longer affects the critical height after reducing to the critical crack depth (δ /H)min. The critical crack depth increases with the increase of slope angle β and decreases with the increase of internal friction angle φ. When the constraint width B/H<0.8, most of the failure mechanism is of face failure. When the constraint width  B/=0.8 , internal friction angle φ =10°, and the constraint width B/H=0.6, internal friction angle φ =15°, the failure mechanism of the slope gradually transits from the face failure mechanism to the toe failure mechanism. The loess slope with vertical cracks has a smaller critical height than the intact slope. The constraint width and internal friction angle can affect the failure mechanism of 3D loess slopes.

Key words: slope instability, vertical cracks, failure mechanism, upper bound method

CLC Number: 

  • TU 444
[1] YANG Xuan-yu, WANG Yong, . Experimental study on shear behavior of regular soil-rock interface considering asperity widths [J]. Rock and Soil Mechanics, 2025, 46(S1): 195-204.
[2] TIAN Lei, XIE Qiang, DUAN Jun, TAO Fu-tao, BAN Yu-xin, FU Xiang, YAN Bin-qi. Mechanical characteristics of pile-anchor joints of three-way inclined anchor-short pile foundation under tension [J]. Rock and Soil Mechanics, 2025, 46(1): 278-288.
[3] LI Yong-wei, XU Lin-rong, FU Jin-yang, SHANG Yong-hui, . Seepage failure mechanism of railway subgrade filling materials under train loading [J]. Rock and Soil Mechanics, 2024, 45(S1): 299-308.
[4] CHEN Lei, ZHANG Qiang, JIA Chao-jun, LEI Ming-feng, HUANG Juan, HU Jing, . Centrifugal modeling and numerical simulation on stability of reservoir bank accumulation slope caused by heavy rainfall [J]. Rock and Soil Mechanics, 2024, 45(5): 1423-1434.
[5] WEI Ming-xing, ZHU Yong-jian, REN Heng, LI Peng, WANG Xi-zhi, WANG Ping, TANG Cheng, . Uniaxial re-bearing mechanical characteristics and failure mechanism of triaxial unloading-damaged sandstone [J]. Rock and Soil Mechanics, 2024, 45(10): 3047-3057.
[6] XIN Chun-lei, YANG Fei, FENG Wen-kai, LI Wen-hui, LIAO Jun. Shattering failure mechanism of step-like bedding rock slope under multi-stage earthquake excitations [J]. Rock and Soil Mechanics, 2023, 44(12): 3481-3494.
[7] TANG Liang, MAN Xiao-feng, CONG Sheng-yi, SI Pan, LING Xian-zhang, ZHANG Xiao-yu, LI Xue-wei, , . Failure mechanism of pile foundations in liquefiable soils under seismic loading: status and challenge [J]. Rock and Soil Mechanics, 2023, 44(10): 2979-2996.
[8] ZHONG Zi-lan, HAN Chun-tang, LI Jin-qiang, ZHAO Xin, MIAO Hui-quan. Ultimate bearing capacity of sand under lateral horizontal movement of shallowly buried pipelines [J]. Rock and Soil Mechanics, 2022, 43(S2): 95-103.
[9] CHENG Jian-long, ZOU Qing-you, YANG Sheng-qi, LI Xiao-zhao, LIANG Quan, QU Lei, MEI Yan, . Simulation of indentation behavior of TBM disc cutter and failure mechanism of hard rock assisted by hydraulic precutting kerfs [J]. Rock and Soil Mechanics, 2022, 43(8): 2317-2326.
[10] ZHANG Jian, QI Rui-yu, ZONG Jing-yao, FENG Tu-gen. Failure mechanism of shield tunnel circumferential excavation face and the influence of the dilatancy effect on the tunnel stability [J]. Rock and Soil Mechanics, 2022, 43(7): 1833-1844.
[11] WANG Gang, SONG Lei-bo, LIU Xi-qi, BAO Chun-yan, LIN Man-qing, LIU Guang-jian, . Shear fracture mechanical properties and acoustic emission characteristics of discontinuous jointed granite [J]. Rock and Soil Mechanics, 2022, 43(6): 1533-1545.
[12] WANG Li, LI Gao, CHEN Yong, TAN Jian-min, WANG Shi-mei, GUO Fei, . Field model test on failure mechanism of artificial cut-slope rainfall in Southern Jiangxi [J]. Rock and Soil Mechanics, 2021, 42(3): 846-854.
[13] REN Yi, WU Shun-chuan, GAO Yong-tao, GAN Yi-xiong, . Effect of sensor calibration on moment tensor analysis of granite uniaxial compression [J]. Rock and Soil Mechanics, 2021, 42(2): 451-461.
[14] ZHOU Chao-biao, LIU Dong, JING Qing-hui, . Mechanical properties and failure mechanisms of the rocklike specimens under tension shear effects [J]. Rock and Soil Mechanics, 2021, 42(12): 3335-3344.
[15] WANG Wei, LIANG Xuan-yu, ZHANG Ming-tao, JIA Ze-yu, ZHANG Si-yi, WANG Qi-zhi. Experimental study on failure mechanism and crack density of sandstone under combined dynamic and static loading [J]. Rock and Soil Mechanics, 2021, 42(10): 2647-2658.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!