Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (10): 2898-2910.doi: 10.16285/j.rsm.2021.1374

• Geotechnical Engineering • Previous Articles     Next Articles

Field pumping test and soil layer deformation analysis of super large scale deep foundation pit engineering

LAN Wei1, 2, WANG Wei-dong3, CHANG Lin-yue1   

  1. 1. Shanghai Underground Space Research Institute in Arcplus China Co., Ltd., Shanghai 200000, China; 2. Shanghai Shenyuan Geotechnical Engineering Co., Ltd., Shanghai 200040, China; 3. East China Architectural & Design Institute Co., Ltd., Shanghai 200002 China
  • Received:2021-08-18 Revised:2022-03-10 Online:2022-10-19 Published:2022-10-18

Abstract: Pumping of confined water is one of the main problems faced by deep foundation pit engineering. And group well pumping test is the main method to reasonably analyze the drawdown of confined water and surface settlement around foundation pit engineering, which is of great significance. A large-scale deep foundation pit pumping test in the area of a terminal in Shanghai was selected as an example in this study. Combined with the engineering geology and hydrogeological conditions of the site, the confined water level change and surface settlement during the group well pumping tests were analyzed. The influence of the drawdown of confined water on soil layer compression and ground settlement were investigated. The results showed that within the monitoring range of 300 m, the maximum ground settlement was 104.9 mm, the maximum drawdown was 21.85 m, and the ground settlement caused by the drawdown per meter was about 5mm. The maximum compression of 7th soil layer was 68.4 mm, and the compression caused by one meter of drawdown was about 3 mm. The ratio of settlement to drawdown tended to decrease with the increase of distance, and within the range of 40−310 m from the center, the ratio of settlement to drawdown was 4.22−1.17 mm.

Key words: deep foundation pit, confined water, group well pumping, drawdown, settlement, compression.

CLC Number: 

  • TU 46
[1] PAN Shen-xin, JIANG Guan-lu, YUAN Sheng-yang, LIU Xian-feng, HE Zi-lei, CAO Li-jun, ZHOU Shi-guang, . Service performance of reinforced soil retaining wall with integral rigid facing of high-speed railway under seismic action [J]. Rock and Soil Mechanics, 2025, 46(S1): 519-530.
[2] ZHANG Zhi-guo, CHEN Yin-ji, ZHU Zheng-guo, WEI Gang, SUN Miao-miao, . Analytical solution for settlement of viscoelastic ground induced by small curvature shield tunnel excavation in soft soil [J]. Rock and Soil Mechanics, 2025, 46(S1): 309-321.
[3] BAO Shu-feng, DONG Zhi-liang, MO Hai-hong, ZHANG Jin-wen, YU Li-ting, LIU Pan, LIU Xiao-qiang, HOU Ming-xun, . Calculation of static batch settlement and low-pressure consolidation settlement of suspended and fluid mud [J]. Rock and Soil Mechanics, 2025, 46(9): 2763-2772.
[4] SONG Mu-yuan, YANG Ming-hui, CHEN Wei, LU Xian-zhui, . Prediction of shield tunneling-induced soil settlement based on self-attention recurrent neural network model [J]. Rock and Soil Mechanics, 2025, 46(8): 2613-2625.
[5] CUI Ji-fei, WU Zhen-zhen, LI Lin, RAO Ping-ping, . Variable stiffness leveling of old and new pile groups considering soil creep [J]. Rock and Soil Mechanics, 2025, 46(6): 1897-1906.
[6] YANG Xiao-hui, ZHAO Zi-yi, GUO Nan, QIAN Bao, ZHU Yan-peng, . Creep characteristics and settlement prediction of transversely isotropic unsaturated loess [J]. Rock and Soil Mechanics, 2025, 46(5): 1489-1500.
[7] WU Xiao-tian, YAO Yang-ping, WEI Ran, CUI Wen-jie. Numerical simulation of soil deformation induced by tunnel construction with unified hardening model [J]. Rock and Soil Mechanics, 2025, 46(3): 1013-1024.
[8] XIAO Rong-jun, MA Wei, LI Feng, YUAN Li-yun. A solution and engineering application of internal force displacement matrix analysis method for deep foundation pit row pile support structure [J]. Rock and Soil Mechanics, 2024, 45(S1): 579-595.
[9] GAO Xu, SONG Kun, LI Ling, YAN E-chuan, WANG Wei-ming, . Prediction of consolidation settlement of heterogeneous ground based on iterative co-Kriging inversion method [J]. Rock and Soil Mechanics, 2024, 45(S1): 761-770.
[10] YANG Yao-hui, XIN Gong-feng, CHEN Yu-min, LI Zhao-feng, . Shaking table test on drainage pile-net composite foundation treated liquefiable subgrade [J]. Rock and Soil Mechanics, 2024, 45(S1): 178-186.
[11] HUANG Da-wei, LIU Jia-xuan, TAN Man-sheng, DENG Xiang-hao, HUANG Yong-liang, WENG You-hua, CHEN Sheng-ping. Scaled model test on interaction between a shield tunnel and ground [J]. Rock and Soil Mechanics, 2024, 45(S1): 371-381.
[12] LI Tao, SHU Jia-jun, WANG Yan-long, CHEN Qian. Horizontal deformation prediction of deep foundation pit support piles based on decomposition methods model [J]. Rock and Soil Mechanics, 2024, 45(S1): 496-506.
[13] WEI Xing, CHEN Rui, CHENG Shi-tao, ZHU Ming, WANG Zi-jian, . Stability of deep foundation pits in Chengdu expansive soil area with the influence of rainfalls and predictions of deformation [J]. Rock and Soil Mechanics, 2024, 45(S1): 525-534.
[14] ZHANG Wen-song, JIA Lei, YAO Rong-han, SUN Li, . Prediction of surface settlement around subway foundation pit based on Self-CGRU model [J]. Rock and Soil Mechanics, 2024, 45(8): 2474-2482.
[15] ZHOU Pan, LI Jing-pei, LI Pan-pan, LIU Geng-yun, ZHANG Chao-zhe, . Prediction method for load-settlement response of a single pile in sand based on an interface constitutive model [J]. Rock and Soil Mechanics, 2024, 45(6): 1686-1698.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!