Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (1): 144-158.doi: 10.16285/j.rsm.2022.0937

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Dynamic behaviors and deterioration characteristics of coal under different initial gas pressures

WANG Lei1, CHEN Li-peng1, LIU Huai-qian1, 2, ZHU Chuan-qi1, LI Shao-bo1, FAN Hao1, ZHANG Shuai1, WANG An-cheng1   

  1. 1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
  • Received:2022-06-20 Accepted:2022-08-26 Online:2023-01-16 Published:2023-01-13
  • Supported by:
    This work was supported by Anhui Province Science and Technology Major Special Projects (202203a07020010) and the Collaborative Innovation Funding Project of Anhui Universities (GXXT-2020-055).

Abstract: In order to investigate the dynamic behaviors of coal and its deterioration law under different initial gas pressures, this study conducted impact compression experiments on gas-bearing coal by using the self-developed visualized gas-bearing coal rock dynamic and static combined loading test system, analyzed the expansion and evolution law of internal fracture in gas-bearing coal by combining with CT scanning system. Moreover, this study also quantitatively characterized the mesoscopic damage degree based on the increment of internal fracture rate of coal samples impacted under different initial gas pressures, and explored the deterioration law of macroscopic mechanical parameters of gas-bearing coal under the impact load. Some conclusions are drawn. (1) The dynamic stress-strain curves of gas-bearing coal under impact loading, which can be divided into linear elastic phase, plastic hardening phase and damage phase, have no obvious compaction phase. And it is found that the peak strength, peak strain and elastic modulus of impacted coal samples deteriorate with the increase of initial gas pressure. (2) Gas aggravates the expansion and coalescence of fractures inside the coal. CT scanning results indicate that the impact damage mode of gas-bearing coal is mainly splitting and stratified splitting damages, and the more significant the two damage modes are with the increase of initial gas pressure, so does the number of fractures and their damage degree inside the coal, which makes the spatial fracture network more complex. (3) The damage variables are defined on a mesoscopic level, and the values of damage variables show a rise of quadratic function with the increase of initial gas pressure. The comparison of the dynamic strength of coal under impact load with the theoretical strength obtained by defining the degree of damage by fracture rate increment verified the rationality of the damage variables defined by fracture rate increment of coal at the mesoscopic level. The intrinsic connection was constructed between the mesoscopic deterioration of gas-bearing coal and the loss of macroscopic parameters. The research results enrich the basic theory of gas-bearing coal dynamics and provide a theoretical reference for the prevention and control of coal-rock-gas composite dynamical hazards in mines.

Key words: gas-bearing coal, dynamic properties, industrial CT scanning, fractures, damage variables

CLC Number: 

  • TD 325
[1] MIAO Ri-cheng, TANG Bei, QI Fei, JIANG Zhi-an, CUI Wei, . Discrete element method simulation of rock breaking by tunnel boring machine disc cutter considering the effects of random fractures [J]. Rock and Soil Mechanics, 2025, 46(S1): 541-552.
[2] WANG Ye, WANG Shu-hong, ZHANG Ze, HAN Bo-wen, YANG Run-sheng, . Range of oil transportation in water-sealed cave reservoirs under the influence of fractures and water curtains [J]. Rock and Soil Mechanics, 2025, 46(9): 2907-2928.
[3] WANG Gang, WANG En-mao, LONG Qing-ming, XU Hao, CHEN Xue-chang, LIU Kun-lun, . Relationship between hydraulic fracturing and fracture propagation in coal seams considering filtration effect [J]. Rock and Soil Mechanics, 2025, 46(4): 1071-1083.
[4] WU Lin, LYU Ya-ru, ZHANG Shen, DING Si-chao, . Research progress and discussion on problems of sandy soil SHPB impact tests and numerical simulations [J]. Rock and Soil Mechanics, 2024, 45(11): 3461-3480.
[5] CUI Wei, PEI Jie-xuan, JIANG Zhi-an, . Experimental study on motion law of particles in rock fissures under dynamic water action [J]. Rock and Soil Mechanics, 2024, 45(10): 2870-2878.
[6] WANG Lei, ZHANG Shuai, LIU Huai-qian, CHEN Li-peng, ZHU Chuan-qi, LI Shao-bo, WANG An-cheng. Research on energy dissipation and damage failure law of gas-bearing coal under impact loading [J]. Rock and Soil Mechanics, 2023, 44(7): 1901-1915.
[7] FAN Jie, ZHU Xing, HU Ju-wei, TANG Yao, HE Chun-lei, . Experimental study on crack propagation and damage monitoring of sandstone using three-dimensional digital image correlation technology [J]. Rock and Soil Mechanics, 2022, 43(4): 1009-1019.
[8] WANG Ming-yu, LIU Qing-zhe, QU Ci-xiao, LI Jin-zhu, . Experimental investigation on the seepage flow through a single fracture in rocks based on the disc fracture model [J]. Rock and Soil Mechanics, 2020, 41(11): 3523-3530.
[9] WANG Pei-tao, HUANG Zheng-jun, REN Fen-hua, ZHANG Liang, CAI Mei-feng, . Research on direct shear behaviour and fracture patterns of 3D-printed complex jointed rock models [J]. Rock and Soil Mechanics, 2020, 41(1): 46-56.
[10] CHEN Wei-zhong, LEI Jiang, YU Hong-dan, LI Fan-fan, MA Yong-shang, YAN Xian-yang, . Experiment on moisture migration in saturation process of clayey rock [J]. Rock and Soil Mechanics, 2019, 40(9): 3327-3334.
[11] LI Bo, HUANG Jia-lun, ZHONG Zhen, ZOU Liang-chao, . Numerical simulation on hydraulic and solute transport properties of 3D crossed fractures [J]. Rock and Soil Mechanics, 2019, 40(9): 3670-3768.
[12] YUAN Liang, LIU Ye-jiao, TIAN Zhi-chao, TANG Chun-an, XUE Jun-hua, DUAN Chang-rui, ZHANG Han, . Numerical test and application of gas pre-drainage in an extra-thick seam by using ground vertical boreholes [J]. Rock and Soil Mechanics, 2019, 40(1): 370-378.
[13] LI Yu-dan, DONG Ping-chuan, ZHOU Da-wei, WU Zi-seng, WANG Yang, CAO Nai. A dynamic model of apparent permeability for micro fractures in shale gas reservoirs [J]. , 2018, 39(S1): 42-50.
[14] WANG Pei-tao, REN Fen-hua, TAN Wen-hui, YAN Zhen-xiong, CAI Mei-feng, YANG Tian-hong.. Model of roughness discrete fractures network for uniaxial compressive test and its mechanical properties [J]. , 2017, 38(S1): 70-78.
[15] ZHANG Wen-quan, YUAN Jiu-dang, WANG Zhong-chang, ZHU Ji-ming,. An experimental study on compressive shear seepage laws of mining-induced fractured rock mass [J]. , 2017, 38(9): 2473-2479.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!