Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (3): 771-783.doi: 10.16285/j.rsm.2022.0448

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Rockburst tendency and failure characteristics of sandstone under cyclic disturbance and high temperature

ZHANG Ping1, 2, REN Song1, 2, ZHANG Chuang1, 2, WU Fei1, 2, LONG Neng-zeng1, 2, LI Kai-xin1, 2   

  1. 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; 2. College of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China
  • Received:2022-04-05 Accepted:2022-07-17 Online:2023-03-21 Published:2023-03-24
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52074048).

Abstract: This paper aims to reveal the rockburst mechanism of sandstone under cyclic disturbance and high temperature. The uniaxial compression tests and CT scan tests on sandstone after different cyclic amplitudes and temperatures were conducted to investigate the mechanical properties, rockburst tendency and failure characteristics of sandstone specimens. The rockburst tendency and failure characteristics of specimen were analyzed. Results showed that the effects of high temperature and cyclic disturbance on the mechanical properties and rockburst tendency of sandstone were significant. The compressive strength, elastic modulus and rockburst tendency of specimens without cyclic disturbances tended to first increase and then decrease as temperature increased, and the threshold temperature was 200 ℃; while those with cyclic disturbances decreased as temperature increased, and the mechanical properties and rockburst tendency of sandstone decreased with increasing the cyclic stress amplitude. The uniaxial compression failure mode shifted from splitting failure to shear failure with the increase of cyclic amplitude and temperature, and the rockburst tendency had a good negative relationship with the three-dimensional fractal dimension of fracture. In addition, the effect of high temperature on the mechanical properties, rockburst tendency and failure degree of sandstone was stronger than that of cyclic disturbance. The research results can provide theoretical basis and engineering reference for the prevention and control of rockburst in high temperature engineering.

Key words: cyclic disturbance, high temperature, sandstone, mechanical properties, rockburst tendency, failure characteristics

CLC Number: 

  • TU451
[1] ZHANG Sheng, BAI Wei, XU Ding-ping, ZHENG Hong, JIANG Quan, LI Zhi-wei, XIANG Tian-bing, . Experimental and theoretical study on sandstone damage evolution under cyclic loading based on acoustic emission and resistivity monitoring [J]. Rock and Soil Mechanics, 2025, 46(S1): 53-66.
[2] WU Jun, MIN Yi-fan, ZHENG Xi-yao, HAN Chen, NIU Fu-jun, ZHU Bao-lin, . Compressive deformation properties of recycled fine aggregates prepared by geopolymer-stabilized sludge method [J]. Rock and Soil Mechanics, 2025, 46(S1): 159-170.
[3] ZHANG Chun-rui, JI Hong-guang, FU Zhen, ZHANG Yue-zheng, SONG Yu, TIAN Zhu-hua, FAN Wen-bo, . Influence of dolomite on the physical and mechanical properties of siltstone [J]. Rock and Soil Mechanics, 2025, 46(9): 2661-2675.
[4] QU Jun-tong, SHI Qi-zhuang, GUO Ying-jie, ZHANG Xiang, LIU Yi, JIANG De-yang. Characteristics and damage mechanisms of ice deposits under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2025, 46(9): 2859-2872.
[5] ZHANG Pei-sen, WANG Hong-wei, HONG Huang, XU Da-qiang, CHEN Zeng-bao, DENG Yun-chi, LIANG Zhan, LI Jin-kun, CHEN Wen-hao, CUI Qian, . Mechanical properties and energy evolution law of deep-buried sandstone under seepage-mining stress coupling [J]. Rock and Soil Mechanics, 2025, 46(7): 1997-2010.
[6] LEI Rui-de, GU Qing-heng, HU Chao, HE Pei, ZHOU Lin-sen, . Acoustic emission signal characteristics and precursory recognition of rock failure in fractured sandstone [J]. Rock and Soil Mechanics, 2025, 46(7): 2023-2038.
[7] NI Zu-jia, QIAO Jiang-mei, ZHANG Jun-kai, TANG Xu-hai, . Determining mechanical property and wave velocity of sandstone by accurate grain-based model and microscale mechanics experiments [J]. Rock and Soil Mechanics, 2025, 46(6): 1865-1880.
[8] PENG Xiao, ZHOU Jian, ZHANG Lu-qing, YANG Zhi-fa, ZHOU Tang-fu, LIN Ya-miao, YANG Duo-xing, . Numerical study on thermal damage characteristics of quartzite under real-time high temperature and natural cooling [J]. Rock and Soil Mechanics, 2025, 46(6): 1943-1956.
[9] WU Qing-qian, SHI Lu, LI Xiao-chun, BAI Bing, . Experimental study on effects of H2O and supercritical CO2 on mechanical properties of sandstone with a low clay mineral content [J]. Rock and Soil Mechanics, 2025, 46(5): 1442-1454.
[10] ZHENG Shu-wen, LIU Song-yu, LI Di, TONG Li-yuan, WU Kai, . Experimental study on mechanical properties of expansive soil-based lightweight foam soil [J]. Rock and Soil Mechanics, 2025, 46(5): 1455-1465.
[11] SONG Yong-jun, LU Yun-long, WANG Shuang-long, XIE Li-jun, CAO Jing-hui, AN Xu-chen, . Evolution characteristics of unfrozen water content and its influence on mechanical properties of rock during freeze-thaw process [J]. Rock and Soil Mechanics, 2025, 46(4): 1049-1059.
[12] ZHANG Tao-yi, WANG Jia-quan, LIN Zhi-nan, TANG Yi, . Influences of fines content on strength deterioration and static shear characteristics of gravelly soil subgrade [J]. Rock and Soil Mechanics, 2025, 46(4): 1141-1152.
[13] TANG Xian-xi, ZHANG Xu-jun, LI Hao-jie, . Evaluation of mechanical properties and analysis of solidification principles of loess solidified with steel slag-coal gangue geopolymer [J]. Rock and Soil Mechanics, 2025, 46(4): 1205-1214.
[14] WANG Gui-lin, WANG Li, WANG Run-qiu, REN Jia-shan, . Shear constitutive model of penetrating sawtooth-like joint surface of red sandstone after dry-wet cycles [J]. Rock and Soil Mechanics, 2025, 46(3): 706-720.
[15] LYU Zhi-tao, ZHU Xiao-bao, LUO Si-cheng, XIA Cai-chu, ZENG Xiang-tai, . Experiment on cumulative freeze-thaw deformation characteristics and microscopic mechanism of sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2025, 46(2): 389-401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!