Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (5): 1309-1318.doi: 10.16285/j.rsm.2022.0953

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Applicability of power-law stress-strain model for coral sand under earth fill stress path

ZHANG Ji-ru, ZHENG Yan-jun, PENG Wei-ke, WANG Lei, CHEN Jing-xin   

  1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
  • Received:2022-06-22 Accepted:2022-08-08 Online:2023-05-09 Published:2023-04-30
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (42172295).

Abstract: Coral sands are commonly used in hydraulic fill foundations and as subgrade fill in the construction of islands and reefs. The stress paths followed by soil consolidation or filled subgrade are characterized by K0 consolidation or constant stress ratio path. It is necessary to develop a computational model that reflects the effect of stress path on deformation in order to accurately estimate soil deformation during the filling process. Based on the generalized Hooke's law, a nonlinear elastic model in the form of a power function is proposed to describe the stress-strain curve of coral sand, and the functional expression is given. A series of K0 consolidation tests and drained triaxial compression tests with a constant stress ratio path is conducted on the coral sand to investigate the stress-strain curves and the behavior of particle breakage. The applicability of the power-law stress-strain model for the coral sand under the earth fill stress path is investigated, and the calculated results of the model are compared with the test curves. The results show that the stress-strain curves under both K0 consolidation and constant stress ratio paths conform to the form of power-law curves and can be described by a power-law nonlinear elastic model. The tangent modulus and tangent Poisson's ratio of this model can be expressed as a function of axial effective stress and can be determined by parameters related to the principal stress ratio or K0 coefficient. Under a constant stress ratio path, the tangent Poisson's ratio and tangent modulus increase with the increase of the axial effective stress. For the same axial effective stress condition, a large principal stress ratio corresponds to a large tangent modulus and a small tangent Poisson's ratio. With the increase of the axial effective stress under the condition of K0 consolidation, the coefficient of earth pressure at rest and tangent Poisson's ratio decrease, while the tangent modulus increases. Under the stress paths of K0 consolidation and constant stress ratio, the amount of particle breakage of coral sand within the test stress range is very small and therefore has little effect on the stress-strain curve. Under the constant stress ratio path, the stress-strain curve of coral sand in a certain stress ratio range can be reasonably predicted by the power function model, in which the effects of different constant stress ratio paths on the stress-strain relationship are considered.

Key words: power-law stress-strain model, triaxial stress path test, coral sand, constant stress ratio path, K0 consolidation

CLC Number: 

  • TU 411
[1] HU Feng-hui, FANG Xiang-wei, SHEN Chun-ni, WANG Chun-yan, SHAO Sheng-jun, . Experiment on particle breakage, strength, and dilatancy of coral sand under true triaxial conditions [J]. Rock and Soil Mechanics, 2025, 46(7): 2147-2159.
[2] QIN You, LONG Hui, WU Qi, ZHUANG Hai-yang, CHEN Guo-xing. Experimental study on threshold strain for pore pressure increase and stiffness degradation in saturated coral sand under complex stress paths [J]. Rock and Soil Mechanics, 2025, 46(11): 3441-3450.
[3] LIU Lu, LI Shuai-xue, ZHANG Xin-lei, GAO Hong-mei, WANG Zhi-hua, XIAO Yang. Experimental investigation on dynamic shear modulus and damping ratio of biocemented coral sand [J]. Rock and Soil Mechanics, 2025, 46(11): 3410-3420.
[4] WANG Xin-zhi, HUANG Peng, LEI Xue-wen, WEN Dong-sheng, DING Hao-zhen, LIU Kai-cheng, . Permeability test of zinc sulfate bonded coral sand and discussion on its engineering application [J]. Rock and Soil Mechanics, 2024, 45(7): 2094-2104.
[5] WANG Bu-xue-yan, MENG Qing-shan, QIAN Jian-gu, . Breaking rate of coral sand and gravel based on volume change [J]. Rock and Soil Mechanics, 2024, 45(7): 1967-1975.
[6] ZHANG Xiao-yan, LI Ji, CAI Yan-yan, ZHANG Jin-xun, . Deformation characteristics of coral sand foundation of aviation oil storage tank [J]. Rock and Soil Mechanics, 2024, 45(12): 3738-3747.
[7] HUANG Peng, LEI Xue-wen, WANG Xin-zhi, SHENG Jian-hua, DING Hao-zhen, WEN Dong-sheng, . Stability of seepage erosion in gap-graded coral sand foundation [J]. Rock and Soil Mechanics, 2024, 45(11): 3366-3377.
[8] QU Ru, ZHU Chang-qi, LIU Hai-feng, WANG Tian-min, MA Cheng-hao, WANG Xing, . A comparative study of methods for determining boundary dry density of coral sand [J]. Rock and Soil Mechanics, 2023, 44(S1): 461-475.
[9] MA Cheng-hao, ZHU Chang-qi, QU Ru, LIU Hai-feng, WANG Tian-min, HU Tao, . Multi-scale particle morphology analysis of coral sand in South China Sea [J]. Rock and Soil Mechanics, 2023, 44(S1): 117-126.
[10] YANG Zheng-tao, QIN You, WU Qi, , CHEN Guo-xing, . Influence of cyclic loading frequency on liquefaction behaviors of saturated coral sand [J]. Rock and Soil Mechanics, 2023, 44(9): 2648-2656.
[11] ZHAO Jin-qiao, DING Xuan-ming, LIU Han-long, OU Qiang, JIANG Chun-yong, . Laboratory experiment study on response of vibroflotation compaction of coral sand [J]. Rock and Soil Mechanics, 2023, 44(8): 2327-2336.
[12] QIN You, DU Xin-yu, MA Wei-jia, WU Qi, CHEN Guo-xing, . A stress-based model for the generation of excess pore water pressure in saturated coral sand subjected to various cyclic stress paths [J]. Rock and Soil Mechanics, 2023, 44(6): 1729-1738.
[13] LUO Zhao-gang, DING Xuan-ming, OU Qiang, JIANG Chun-yong, FANG Hua-qiang, . Experimental study on strength and deformation characteristics of coral sand reinforced by geogrid [J]. Rock and Soil Mechanics, 2023, 44(4): 1053-1064.
[14] PENG Yun, HU Ming-jian, A Ying, WANG Xue-qing, . Testing of coral sand thermal physical parameters and comparative analysis of prediction models [J]. Rock and Soil Mechanics, 2023, 44(3): 884-895.
[15] LIANG Xiao-cong, CHEN Ping-shan, LIU ZHI-jun, WANG Yong-zhi, ZHU Ming-xing, . A liquefaction evaluation method for coral sand based on dynamical centrifuge model test verification [J]. Rock and Soil Mechanics, 2023, 44(11): 3173-3181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!