Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (8): 2318-2326.doi: 10.16285/j.rsm.2022.1300

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Lining- stratum interaction mechanism of mountain tunnel based on static pushover model test

LU Qin-wu, GUAN Zhen-chang, LIN Lin, WU Shu-jing, SONG De-jie   

  1. College of Civil Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
  • Received:2022-08-22 Accepted:2022-12-13 Online:2023-08-21 Published:2023-08-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52278399) and the Natural Science Foundation of Fujian Province (2021J01599).

Abstract: With the rapid development of traffic infrastructure construction in western mountain area, the lining-stratum interaction mechanism of mountain tunnel under seismic effects has attracted increasing attentions. Based on the prototype of a regular two-lane highway tunnel section with V-grade surrounding rock, a static pushover model test for mountain tunnel was conducted. The variations of stratum displacement, stratum strain and ground pressure with pushover distance were carefully studied, and the lining-stratum interaction mechanism was thoroughly discussed. The test results show that: the lining-stratum interaction can be generally divided into compacting stage, overturning stage, and dragging stage. The stratum tends to circumferentially flow along the lining perimeter from the springing line in the overturning stage, and then drives the lining to shift together in the dragging stage. The stratum near the springing line experiences predominantly radial compression, forming a compression deformation zone, while the stratum near the lining shoulder mainly undergoes circumferential compression, forming a slip deformation zone. The response of the ground pressure on the left and right sides are exactly opposite. Specifically, the ground pressure in the compression deformation zone on the right side is greater than its counterpart on the left side, while the ground pressure in the slip deformation zone on the right side is less than its counterpart on the left side. These researches can provide some experimental basis and technical support for the anti-seismic calculation of mountain tunnels based on response displacement method.

Key words: mountain tunnel, lining-stratum interaction mechanism, static pushover model test, digital image correlation, ground pressure

CLC Number: 

  • TU 457
[1] CAO Hu, ZHANG Guang-qing, LI Shi-yuan, WANG Wen-rui, XIE Peng-xu, SUN Wei, LI Shuai, . A hydraulic fracture extension model for fracturing and enhanced oil recovery considering the influence of the fracture process zone and its application [J]. Rock and Soil Mechanics, 2025, 46(3): 798-810.
[2] CAO Yong, YU Fei, HUANG Kang, DAI Zhang-jun, CHEN Shan-xiong, ZHANG Zhi-cai, . Failure characteristics of rock-concrete interface with randomly generated roughness [J]. Rock and Soil Mechanics, 2025, 46(1): 315-326.
[3] DU Jin-fei, DU Yu-xiang, JIA Yong-sheng, SUN Jin-shan, YAO Ying-kang, XIE Quan-min, FAN Kun-hui, . Analysis of deformation damage and energy dissipation of red sandstone under hydro-dynamic coupling effect [J]. Rock and Soil Mechanics, 2024, 45(S1): 248-258.
[4] ZHANG Hong-ri, YANG Ji-ming, XU Yong-fu, XIAO Jie, HAN Zhong, WANG Lei, LIN Yu-xiang, . Study on three-dimensional crack propagation characteristics of expansive soil based on digital image correlation technology [J]. Rock and Soil Mechanics, 2024, 45(S1): 309-323.
[5] ZHANG Ke, GUAN Shi-hao, QI Fei-fei, XU Yi, JIN Ke-sheng, . Macromechanical properties and microstructure of sandstone under scouring effect [J]. Rock and Soil Mechanics, 2024, 45(7): 1929-1938.
[6] ZHANG Chao-jun, WU Shun-chuan, CHU Chao-qun, PANG Rui, . Strain field evolution and ultrasonic time-lapse attenuation characteristics of fractured sandstone [J]. Rock and Soil Mechanics, 2024, 45(5): 1284-1296.
[7] LU Qin-wu, CHEN Zhi-wei, GUAN Zhen-chang, CAI Jian-guo, YANG Zhi-wei, . Ground pressure calculation model of four-lane highway tunnel based on static pushover tests [J]. Rock and Soil Mechanics, 2024, 45(11): 3315-3323.
[8] DU Bu-ge, ZHANG Guang-qing, ZHOU Da-wei, QU Le, QIU Ren-yi, FAN Zong-yang, . Effect of microscopic damage on tensile failure of laminated shale after CO2-H2O treatment [J]. Rock and Soil Mechanics, 2024, 45(1): 59-67.
[9] PENG Yang, GAO Yong-tao, WANG Wen-lin, FUER Kate, WEN Jian-min, ZHOU Yu, . Fracture mechanism of coal-rock combination under unilateral confinement compression [J]. Rock and Soil Mechanics, 2023, 44(S1): 387-398.
[10] GAO Zhi-ao, KONG Ling-wei, WANG Shuang-jiao, LIU Bing-heng, LU Jian-feng, . Deformation behavior and shear zone evolution characteristics of undisturbed expansive soil with different fissure directions under plane strain condition [J]. Rock and Soil Mechanics, 2023, 44(9): 2495-2508.
[11] WANG Lei, ZHANG Shuai, LIU Huai-qian, CHEN Li-peng, ZHU Chuan-qi, LI Shao-bo, WANG An-cheng. Research on energy dissipation and damage failure law of gas-bearing coal under impact loading [J]. Rock and Soil Mechanics, 2023, 44(7): 1901-1915.
[12] CHEN Lei , ZHANG Guang-qing, ZHANG Min, CAO Yu-jie , SHEN Li-ji, . Propagation process of hydraulic fracture crossing an orthogonal discontinuity [J]. Rock and Soil Mechanics, 2023, 44(1): 159-170.
[13] ZHANG Dong-xiao, GUO Wei-yao, ZHAO Tong-bin, GU Xue-bin, CHEN Le-xin, . Experimental study on directional propagation of rock type-Ⅰ crack [J]. Rock and Soil Mechanics, 2022, 43(S2): 231-244.
[14] LIU Bo, XU Fei, ZHAO Wei-gang, GAO Yang, . Review and prospect of model test system for tunnel engineering structure [J]. Rock and Soil Mechanics, 2022, 43(S1): 452-468.
[15] PENG Shou-jian, ZHANG Qian-wen, XU Jiang, CHEN Yi-an, CHEN Can-can, CAO Qi, RAO Hao-kui, . Experimental study of deformation localization characteristics of sandstone under seepage-stress coupling based on 3D digital image correlation technology [J]. Rock and Soil Mechanics, 2022, 43(5): 1197-1206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!