Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (8): 2432-2444.doi: 10.16285/j.rsm.2022.1391

• Numerical Analysis • Previous Articles     Next Articles

Rock breaking characteristics and mechanism of conical polycrystalline diamond compact cutter

XIONG Chao1, 2, HUANG Zhong-wei2, WANG Li-chao3, SHI Huai-zhong2, HE Wen-hao2, CHEN Zhen-liang2, LI Gen-sheng2   

  1. 1. College of Mechanical and Transportation Engineering, China University of Petroleum (Beijing), Beijing 102249, China; 2. National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing, 102249, China; 3. China National Oil and Gas Exploration and Development Co. Ltd., Beijing 102249, China
  • Received:2022-09-08 Accepted:2022-10-23 Online:2023-08-21 Published:2023-08-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (U19B6003-05), the National Key Research and Development Program of China (2019YFA0708302), the Science Foundation of China University of Petroleum, Beijing (No.2462023SZBH003), and the Beijing Outstanding Young Scientist Program (BJJWZYJH01201911414038).

Abstract: Conical polycrystalline diamond compact (PDC) cutter is a new type of PDC cutter with high impact and wear resistance, which has a very good drilling effect in hard, strong abrasion, and soft-hard interbedded formations. In order to reveal the hard-rock breaking mechanism of conical PDC cutters, the laboratory test and numerical simulation on the granite broken by the conical PDC cutter were carried out. The influence law of cutting depth and front rake angle on cutting force and rock breaking specific energy of the conical PDC cutter was analyzed. In the laboratory test, a high-speed camera and transparent K9 glass were used to observe the formation process of cuttings and the initiation and propagation of microcracks under the action of conical PDC cutters. The stress response and damage evolution characteristics during the rock breaking process were analyzed by numerical simulation. The surface morphology and fracture microscopic characteristics of cutting grooves and large-size cuttings were analyzed, and the mechanical model of conical PDC cutters to break granite was established. The results show that the granite breaking process can be divided into two stages: crushing and chipping. The effect of the front rake angle on the rock breaking process is relatively small, while the influence of cutting depth is significant. The cracks around the conical PDC cutter are mainly composed of compaction nucleation, longitudinal crack and transverse crack. The maximum propagation depth of the longitudinal and transverse cracks is 6.69 and 4.53 times the cutting depth, respectively. The compressive stress around the cutter tip is concentrated, the shear-compression failure occurs, an arc-shaped strip-like tensile stress zone is formed at the periphery of the compressive stress zone, and the tensile micro-cracks are induced at the boundary of the cutter tip and compressive stress zone. When the micro-crack propagates to the front of conical PDC cutters to form an arc-shaped tensile main crack, the block debris cracking occurs, which improves the rock breaking efficiency. Meanwhile, the tensile micro-cracks propagate to the rock inside and deteriorate rock strength, a bottom damaged area is formed, which improves the rock breakage efficiency of the subsequent cutting.

Key words: conical polycrystalline diamond compact (PDC) cutter, granite, rock breaking process, rock breaking mechanism

CLC Number: 

  • TE 242
[1] GAO Ping-hong, GAO Chen-bo, PENG Cheng-wei, LIU Fei-yu, . Model test and discrete element analysis of granite residual soil slopes under rainfall conditions [J]. Rock and Soil Mechanics, 2025, 46(5): 1632-1642.
[2] SHANG Zhao-wei, KONG Ling-wei, YAN Jun-biao, GAO Zhi-ao, WANG Fei, LI Cheng-sheng, . Small-strain shear modulus properties of unsaturated granitic residual soils and determination method of soil-water retention curves [J]. Rock and Soil Mechanics, 2025, 46(4): 1131-1140.
[3] XUE Yi, YANG Bo-kun, LIU Yong, SUN Qiang, ZHANG Yun, CAO Zheng-zheng, . Mode I fracture characteristics of high-temperature granite under cyclic liquid nitrogen cooling [J]. Rock and Soil Mechanics, 2025, 46(2): 422-436.
[4] ZHOU Chang-bing, YAN Jun-hao, LI Xiao-shuang, . Numerical simulation of dynamic evolution characteristics of thermal fracture in granite [J]. Rock and Soil Mechanics, 2024, 45(S1): 694-704.
[5] WANG Gui-bin, LIU Huan-dui, TANG Ming-hao, YANG Chun-he, CHEN Shi-wan, . Excavation damage zones in granite cavern under complex stress paths [J]. Rock and Soil Mechanics, 2024, 45(9): 2539-2553.
[6] WANG Zhi-de, QIAN Meng-fan, LI Jie, SI Ying-ying, JIANG Li-min, . Damage mechanism of jointed granite under high strain rate impact loading [J]. Rock and Soil Mechanics, 2024, 45(7): 1917-1928.
[7] WANG Zhi-de, SI Ying-ying, LI Jie, QIAN Meng-fan, AN Jia-xing, . Dynamic response of jointed granite under low strain rate impact load [J]. Rock and Soil Mechanics, 2024, 45(6): 1755-1762.
[8] YUAN Wei, LI Jian-chun, LI Xing, . Experimental and numerical study on mechanical behaviors of granite subjected to impact shear force [J]. Rock and Soil Mechanics, 2024, 45(6): 1675-1685.
[9] LIU Xin-rong, ZHANG Ji-lu, ZHOU Xiao-han, LIU Yu-yu, LIU Han-zhi, . Deformation and seepage characteristics of precast fractured rock mass considering the influence of axial stress [J]. Rock and Soil Mechanics, 2024, 45(12): 3596-3612.
[10] ZHANG Su-biao, ZHANG Fan, LI Kang-wen, MA Shuang-ze. Influence of high temperature on shear characteristics of granite with different particle sizes [J]. Rock and Soil Mechanics, 2024, 45(10): 2981-2993.
[11] WANG Hong-jian, CUI Yan-zong, YUAN Guang-xiang, ZHAO Fei, ZHANG Yi-yu, HUANG Zhi-quan, . Fractal characteristics analysis of granite with different weathering degrees based on uniaxial compression experiment [J]. Rock and Soil Mechanics, 2023, 44(8): 2249-2265.
[12] WANG Chun, HU Man-gu, WANG Cheng, . Dynamic damage characteristics and structural model of concentric perforated granite subjected to thermal-hydro-mechanical coupling [J]. Rock and Soil Mechanics, 2023, 44(3): 741-756.
[13] SHU Rong-jun, KONG Ling-wei, ZHOU Zhen-hua, JIAN Tao, LI Tian-guo, . Mechanical behavior of granite residual soil under unloading and increasing pore water pressure [J]. Rock and Soil Mechanics, 2023, 44(2): 473-482.
[14] LI Cheng-sheng, KONG Ling-wei, SHU Rong-jun, LIU Zhi-jun, ZHANG Bing-xin, . Meso-structure damage evolution in shear bands of granite residual soil [J]. Rock and Soil Mechanics, 2023, 44(11): 3203-3212.
[15] WANG Yang, CHEN Wen-hua. Nonlinear temperature field of granite fracture tip induced by high natural environmental temperature based on fracture shape function [J]. Rock and Soil Mechanics, 2022, 43(S1): 267-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!