Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (12): 3349-3359.doi: 10.16285/j.rsm.2022.2005

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on shear strength of unsaturated soil over a wide suction range and its prediction

NIU Geng1, 2, ZHU Xiao-feng1, LI Jun-xing1, LÜ Meng-yuan1, AN Li-qi1, CHEN Zi-han1   

  1. 1. School of Science, Qingdao University of Technology, Qingdao, Shandong 266520, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2022-12-28 Accepted:2023-03-31 Online:2023-12-20 Published:2023-12-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (42307236, 12172187), the Natural Science Foundation of Shandong Province (ZR2023QE001) and the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering (SKLGME021019).

Abstract: In this paper, the experimental studies on the water retention and strength properties of unsaturated weakly expansive soil in a wide suction range were carried out, and a strength model of unsaturated soil over a wide suction range was proposed. The results show that in the wide suction range, the stress-strain curve increases with the increase of suction. The strain hardening occurs in the low suction range, while the strain softening appears in the high suction range. In the low suction range, the sample presents shear deformation, while in the high suction range, the sample begins to show a shear dilation trend at the axial strain of 2%. In addition, a soil-water retention curve model was proposed to distinguish adsorbed water from capillary water, assuming that the strength increment caused by suction is mainly determined by capillary water. The degree of saturation of capillary water was used to replace the effective stress coefficient and then it was substituted into the Bishop’s unsaturated soil strength formula. The proposed model was verified by test data of various soil types and compared with the models in the literature. The results show that the proposed model can well describe the strength of unsaturated soil in a wide suction range.

Key words: unsaturated soil, shear strength, soil-water retention curve, effective stress coefficient, wide suction range

CLC Number: 

  • TU443
[1] YANG Xuan-yu, WANG Yong, . Experimental study on shear behavior of regular soil-rock interface considering asperity widths [J]. Rock and Soil Mechanics, 2025, 46(S1): 195-204.
[2] JIANG Wen-hao, WANG hao, LIAO Guang-zhi, CHEN Bin-hua, . Analytical solutions for one-dimensional transient seepage of water in the two-layered unsaturated soils under time-varying rainfall conditions [J]. Rock and Soil Mechanics, 2025, 46(9): 2721-2737.
[3] FANG Wei, WU Run-feng, ZHOU Chun-mei, . Rankine passive earth pressure of unsaturated soil using envelope shell model [J]. Rock and Soil Mechanics, 2025, 46(9): 2885-2893.
[4] SHEN Yang, SHEN Jia-yi, LIANG Hui, FAN Ke-wei. Triaxial tests on simulated calcareous sand based on 3D printing technology [J]. Rock and Soil Mechanics, 2025, 46(8): 2353-2362.
[5] LAO Guo-feng, YANG Jun-sheng, XIE Yi-peng, TANG Chong, XU Zhi-peng, . A peak shear strength model of continuously graded granular soils based on skeleton structure indices [J]. Rock and Soil Mechanics, 2025, 46(8): 2459-2470.
[6] ZHANG Zhen-guang, XU Jie, FAN Jia-shen, . Novel plastic solutions of spherical cavity expansion in unsaturated soils under undrained conditions [J]. Rock and Soil Mechanics, 2025, 46(7): 1988-1996.
[7] LUO Zuo-sen, CAO Xu, DENG Hua-feng, YANG Wang, LI Jian-lin, YANG Chao, . Influence of dynamic normal load on shear mechanical properties of limestone joint surface under different water-bearing states [J]. Rock and Soil Mechanics, 2025, 46(6): 1799-1810.
[8] OUYANG Miao, ZHANG Hong-ri, WANG Gui-yao, DENG Ren-rui, GUO Ou, WANG Lei, GAO You, . Optimization of the ratio of expansive soil improved by biological matrix based on response surface method [J]. Rock and Soil Mechanics, 2025, 46(5): 1368-1378.
[9] SHANG Zhao-wei, KONG Ling-wei, YAN Jun-biao, GAO Zhi-ao, WANG Fei, LI Cheng-sheng, . Small-strain shear modulus properties of unsaturated granitic residual soils and determination method of soil-water retention curves [J]. Rock and Soil Mechanics, 2025, 46(4): 1131-1140.
[10] CAO Su-nan, LI Chun-hong, CHEN Yuan-bing, FEI Kang, . Shear characteristics of biomimetic sand-structure interface under cyclic loading conditions [J]. Rock and Soil Mechanics, 2025, 46(3): 821-832.
[11] WU Xue-zhen, XIA Ya-xin, LI Da-yong, YOU Xian-hui, SHAN Ning-kang, XIAO Zhen-ke, CHEN Xiang, . Experiment on shear strength of inner interface of a new type stiffened deep mixed pile [J]. Rock and Soil Mechanics, 2025, 46(2): 467-478.
[12] ZHANG Zhen-guang, XU Jie, LI Hai-xiang, . A slip line solution of active earth pressure against shafts in unsaturated soils considering the intermediate principal stress [J]. Rock and Soil Mechanics, 2025, 46(10): 3045-3053.
[13] WANG Jun, ZHANG Kai-yu, CHEN Sheng-kai, QIN Wei, NI Jun-feng, GAO Zi-yang, ZHANG Yi-fang, . Experimental study on explosive deposition depth affecting soil parameters in explosion replacement method [J]. Rock and Soil Mechanics, 2025, 46(1): 123-132.
[14] ZHANG Hua-jin, WU Shun-chuan, LI Bing-lei, ZHAO Yu-song, . Uncertainty estimation of rock shear strength parameters based on Gaussian process regression [J]. Rock and Soil Mechanics, 2024, 45(S1): 415-423.
[15] ZHU Jun-yu, PEI Li-hua, GUI Yue, . Reconceptualization of the shear strength of organic soils: based on the perception of soil organic matter occurrence forms [J]. Rock and Soil Mechanics, 2024, 45(S1): 451-460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!