Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (12): 3639-3652.doi: 10.16285/j.rsm.2022.1709

• Numerical Analysis • Previous Articles    

Fatigue analysis of jacket foundations for offshore wind turbines

DU Yue-ming1, 2, KONG De-qiong1, 2, WANG Si-liu1, 2, ZHU Bin2, 3   

  1. 1. Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310058, China; 2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang 310058, China; 3. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
  • Received:2022-11-01 Accepted:2023-01-08 Online:2023-12-20 Published:2023-12-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52071289, 51988101).

Abstract: Jacket foundations are considered as the most promising solution for offshore wind turbines (OWTs), due to its large lateral stiffness and adaptability to different marine environments. Nowadays, the study on jacket foundations mainly focuses on the bearing and deformation behavior, with significantly less attention being paid to their fatigue damage. Besides, the actual pile-soil interaction is always ignored when assessing the fatigue damage or fatigue life of the foundations for OWTs. This paper presents the development of a three-dimensional numerical model of tetrapod piled jacket foundations, with the interaction between the corner piles and the soil being implemented into it. The numerical model is validated against centrifuge tests. Then, a time-domain fatigue analysis method for OWT jacket foundations is proposed. The influences of pile-soil interaction, wind-wave load coupling effect, and lateral loading direction on the fatigue damage of the jacket are examined in detail. Main findings include: (1) Neglecting the pile-soil interaction will yield significant underestimation, i.e., approximately 40%, of the fatigue damage of OWT jackets, and this becomes even more discernible at the lower oblique support joints, exhibiting an underestimation up to 90% in certain scenarios. (2) Wind load plays a dominant role in determining fatigue damage of the jacket, and the proportion of fatigue damage caused by winds is much greater than that caused by waves. (3) The lateral wind-wave loading along the diagonal direction develops a greater displacement of the jacket than that along the orthogonal direction. However, the corresponding fatigue damage is relatively small, about 70% of that along the orthogonal direction.

Key words: jacket foundation, fatigue analysis, pile-soil interaction, wind-wave coupling

CLC Number: 

  • TU473
[1] KE Wen-hai, YANG Wen-hai, LI Yuan, WU Lei, . Dynamic response of pile foundation in slope topography under SH wave [J]. Rock and Soil Mechanics, 2025, 46(5): 1545-1544.
[2] ZHOU Pan, LI Jing-pei, LI Pan-pan, LIU Geng-yun, ZHANG Chao-zhe, . Prediction method for load-settlement response of a single pile in sand based on an interface constitutive model [J]. Rock and Soil Mechanics, 2024, 45(6): 1686-1698.
[3] ZHANG Yuan-sheng, LEI Yun-chao, QIANG Xiao-jun, WU Dong-dong, WANG Dong-po, WANG Ji-hua, . Centrifugal model test of slope reinforced by multi-row micro-pile frame structure [J]. Rock and Soil Mechanics, 2023, 44(7): 1983-1994.
[4] ZHU Rui, ZHOU Feng, CHEN Ting-zhu, DENG Ya-guang, . Soil squeezing effect and bearing mechanism of strength composite pile [J]. Rock and Soil Mechanics, 2023, 44(12): 3577-3586.
[5] LI Shuang-long, WEI Li-min, FENG Sheng-yang, HE Qun, ZHANG Kai-xin, . Time-dependent interactions between passive piles and soft soils based on the extended Koppejan model [J]. Rock and Soil Mechanics, 2022, 43(9): 2602-2614.
[6] HUANG Fu-yun, ZHOU Zhi-ming, ZHUANG Yi-zhou, LIU Fan, LIU Ming-qi, . Experiment on Interaction of High Performance Concrete Pile-Soil in IAJBs [J]. Rock and Soil Mechanics, 2022, 43(3): 591-601.
[7] ZHAO Hai-peng, LI Xue-you, WAN Jian-hong, ZHENG Xiang-zhi, LIU Si-wei, . Analysis of laterally-loaded piles embedded in multi-layered soils using efficient finite-element method [J]. Rock and Soil Mechanics, 2021, 42(7): 1995-2003.
[8] ZHANG Xiao-ling, ZHU Dong-zhi, XU Cheng-shun, DU Xiu-li, . Research on p-y curves of soil-pile interaction in saturated sand foundation in weakened state [J]. Rock and Soil Mechanics, 2020, 41(7): 2252-2260.
[9] SHI Li, WANG Hui-ping, SUN Hong-lei, PAN Xiao-dong, . Approximate analytical solution on vibrations of saturated ground induced by pile foundations [J]. Rock and Soil Mechanics, 2019, 40(5): 1750-1760.
[10] XIONG Hui, JIANG Ya-feng, YU Rong-xia. Lateral vibration impedance of piles embedded in layered soil based on Laplace transform [J]. , 2018, 39(5): 1901-1907.
[11] HUANG Ming, ZHANG Bing-qi, CHEN Fu-quan, XU De-xiang,. A new incremental load transfer model of pile-soil interaction based on disturbed state concept [J]. , 2017, 38(S1): 167-172.
[12] ZHANG Hao, SHI Ming-lei, GUO Yuan-cheng, LI Yong-hui,. Analysis of stress and displacement characteristics of bridge pile and pier adjacent to one-side loading [J]. , 2017, 38(9): 2683-2692.
[13] Ya-ru , DING Xuan-ming , LIU Han-long , LIU Yi,. Mechanical response of pile-soil interactions of X-section cast-in-place concrete piles to cross-sectional shape [J]. , 2015, 36(S2): 357-364.
[14] YANG Xiao, TANG Jie. Vertical vibration of single pile with transversal inertia effect in stratified saturated soil [J]. , 2013, 34(6): 1560-1566.
[15] ZHANG Ai-jun , MO Hai-hong , XIANG Wei . Effect of lateral soil movement modes on behavior of stabilizing piles [J]. , 2012, 33(9): 2719-2723.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!