Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (6): 1686-1698.doi: 10.16285/j.rsm.2023.0826

• Fundamental Theory and Experimental Research • Previous Articles     Next Articles

Prediction method for load-settlement response of a single pile in sand based on an interface constitutive model

ZHOU Pan1, 2, LI Jing-pei1, 2, LI Pan-pan1, 2, LIU Geng-yun1, 2, ZHANG Chao-zhe3   

  1. 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 3. Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 211189, China
  • Received:2023-06-17 Accepted:2023-08-10 Online:2024-06-19 Published:2024-06-19
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (42272310).

Abstract: A novel method for predicting the load-settlement response of a single pile in sands is developed based on an interface constitutive model. Firstly, a rigorous nonlinear load-transfer model for the pile-soil interface is derived from the soil-structure interface constitutive model. This model incorporates the beneficial features of the adopted interface constitutive model and effectively simulates fundamental interface characteristics, such as strain hardening (or softening), normal shear dilation, and stress path dependency occurring at the pile-soil interface. Additionally, a hyperbolic load-transfer model is employed to simulate the nonlinear stress-displacement relationship between the pile end and soil. The parameters for the aforementioned load-transfer model can be calibrated through experimental interface shear tests and geotechnical experiments. Subsequently, a one-dimensional computational model for analyzing the load-settlement response of a single pile is proposed based on the load transfer method, with numerical solutions obtained using an iterative algorithm. Finally, the theoretical results are compared with reported and independently conducted model pile tests to validate the accuracy of the proposed theoretical approach. The experimental results show a good agreement between the predicted and measured values, demonstrating the method’s excellent capability in predicting the load-settlement response of both displacement and non-displacement piles. This paper presents an analytical framework based on the interface constitutive model for analyzing the load-settlement response of single piles, providing a theoretical reference for optimizing the design of pile foundations in sandy soils under vertical loads.

Key words: pile foundation, sand, load-settlement response, pile-soil interaction, interface constitutive model, model test

CLC Number: 

  • TU473.1
[1] ZHANG Sheng, BAI Wei, XU Ding-ping, ZHENG Hong, JIANG Quan, LI Zhi-wei, XIANG Tian-bing, . Experimental and theoretical study on sandstone damage evolution under cyclic loading based on acoustic emission and resistivity monitoring [J]. Rock and Soil Mechanics, 2025, 46(S1): 53-66.
[2] WANG Ning-bo, YAO Yang-ping, LIU Lin, LI Xiang-yu, MAO An-qi, LI Ning, . Unified hardending model for sand considering confining pressure effects [J]. Rock and Soil Mechanics, 2025, 46(S1): 297-308.
[3] LAI Zhi-qiang, BAI Sheng-yuan, CHEN Lin, ZOU Wei-lie, XU Shu-ling, ZHAO Lian-jun, . Experimental study of dewatering characteristics of ring-type tube stockyard sludge storage [J]. Rock and Soil Mechanics, 2025, 46(9): 2805-2815.
[4] HUANG Da-wei, LU Wen-jian, LUO Wen-jun, YU Jue, . An experimental study on the influence of synchronous grouting during shield tunnel construction on vertical displacement and surrounding earth pressure in sandy soil [J]. Rock and Soil Mechanics, 2025, 46(9): 2837-2846.
[5] JIN Gui-xiao, LIN Shao-cong, JIANG Qi-wu, HUANG Ming, LI Xi, . Seepage mathematical model of enzyme-induced calcium carbonate precipitation-treated sandy soil based on the Kozeny-Carman equation [J]. Rock and Soil Mechanics, 2025, 46(8): 2376-2386.
[6] SHEN Yang, SHEN Jia-yi, LIANG Hui, FAN Ke-wei. Triaxial tests on simulated calcareous sand based on 3D printing technology [J]. Rock and Soil Mechanics, 2025, 46(8): 2353-2362.
[7] SONG Wei-tao, ZHANG Pei, DU Xiu-li, LIN Qing-tao, . Influence of soil property on ground response during construction of shallow shield tunnel [J]. Rock and Soil Mechanics, 2025, 46(7): 2179-2188.
[8] LEI Rui-de, GU Qing-heng, HU Chao, HE Pei, ZHOU Lin-sen, . Acoustic emission signal characteristics and precursory recognition of rock failure in fractured sandstone [J]. Rock and Soil Mechanics, 2025, 46(7): 2023-2038.
[9] FAN Meng, LI Jing-jun, YANG Zheng-quan, LIU Xiao-sheng, ZHU Kai-bin, ZHAO Jian-ming, . Applicability of standard penetration test based liquefaction assessment methods for sandy soil in deep layer [J]. Rock and Soil Mechanics, 2025, 46(7): 2085-2094.
[10] CHEN Jia-rui, FAN Bao-yun, YE Jian-hong, ZHANG Chun-shun, . Particle breakage and its evolution model of calcareous sand through triaxial tests [J]. Rock and Soil Mechanics, 2025, 46(7): 2095-2105.
[11] HU Feng-hui, FANG Xiang-wei, SHEN Chun-ni, WANG Chun-yan, SHAO Sheng-jun, . Experiment on particle breakage, strength, and dilatancy of coral sand under true triaxial conditions [J]. Rock and Soil Mechanics, 2025, 46(7): 2147-2159.
[12] ZHU Xian-xiang, ZHANG Qi, MA Jun-peng, WANG Yong-jun, MENG Fan-zhen, . Diffusion mechanism of seepage grouting in water-bearing sand layer under slurry-water replacement effect [J]. Rock and Soil Mechanics, 2025, 46(6): 1957-1966.
[13] FU Hai-ying, ZHONG Yu-wei, WANG Xiao-wen, WU Bo-han, YUAN Ran, . Critical state parameter model of sand based on subloading surface theory [J]. Rock and Soil Mechanics, 2025, 46(6): 1788-1798.
[14] QI Kai, WAN Zhi-hui, DAI Guo-liang, HU Tao, ZHOU Feng, ZHANG Peng, . Mechanical properties and microscopic mechanisms of calcareous sand solidified with different grouting materials [J]. Rock and Soil Mechanics, 2025, 46(6): 1825-1838.
[15] YANG Bai, QIN Chao, ZHANG Yin-hai, WANG Wei, XIAO Shi-guo, . Model tests on bearing characteristics of pile with high rock-socketed ratio above an underlying karst cave [J]. Rock and Soil Mechanics, 2025, 46(6): 1839-1850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!