Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (7): 2037-2049.doi: 10.16285/j.rsm.2023.1123

• Fundamental Theory and Experimental Research • Previous Articles     Next Articles

Study on the mechanism and optimal proportioning test of pea gravel backfill behind TBM tunnel linings reinforced with enzyme-induced calcium carbonate precipitation (EICP) technology

JIANG Qi-wu1, HUANG Ming1, CUI Ming-juan1, JIN Gui-xiao2, PENG Yi-xin1, 3   

  1. 1.College of Civil Engineering, Fuzhou University, Fuzhou, Fujian 350116, China; 2. College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350116, China 3. College of Architecture and Civil Engineering, Sanming University, Sanming, Fujian 365004, China
  • Received:2023-07-27 Accepted:2023-10-13 Online:2024-07-10 Published:2024-07-19
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41972276, 52108307), the Natural Science Foundation of Fujian Province (2020J06013), the Foal Eagle Program" Youth Top-notch Talent Project of Fujian Province, China (00387088) and Qishan Scholar Project of Fuzhou University (XRC-22015).

Abstract: In tunnel boring machine (TBM) tunnels, the pea gravel as a filling layer between the tunnel lining segments and surrounding rock is of significant importance for the load-bearing capacity and impermeability of the segments. Due to the poor flowability of cement slurry, it fails to adequately fill the backfill layer, resulting in defects such as voids behind the walls and inadequate grouting. Enzyme-induced calcium carbonate precipitation technology (EICP) has emerged as an environmentally friendly and efficient reinforcement method. The grouting material is liquid, exhibiting excellent fluidity and diffusivity, making it a promising solution for grouting in pea gravel backfill layers. To optimize the effectiveness of EICP grouting in pea gravel, an attempt was made to use standard sand and pea gravel as backfill aggregates. In order to quantitatively analyze the optimal mixing ratio, experiments were conducted with different ratios of pea gravel to sand (0.5, 0.75, 1.0, 1.25, 1.5) and varying grouting frequencies (9, 12, 15 times) in sand column solidification tests. Through unconfined compressive strength tests, permeability tests, determination of calcium carbonate content, ultrasonic velocity measurements, and scanning electron microscopy (SEM) microscopic analysis, the impact of different ratios of pea gravel to sand on the solidification effectiveness of EICP was analyzed from both macro and micro perspectives. The results indicate that the optimal ratio for EICP reinforcement of mixed pea gravel and sand is 1:1.5. After 15 grouting cycles, the uniaxial compressive strength of the specimens can reach up to 4.55 MPa, and the permeability coefficient is 1.72×10−5 m/s. Samples with a higher sand content exhibit a notable phenomenon where interparticle voids are readily filled and compacted by calcium carbonate crystals. This process results in a higher proportion of effective bonding among calcium carbonate crystals, consequently contributing to an elevated unconfined compressive strength of the stone body. The findings of this study can provide a theoretical basis for the engineering application of EICP technology in reinforcing TBM backfilled pea gravel.

Key words: enzyme-induced calcium carbonate deposition (EICP), tunnel boring machine, pea gravel, unconfined compressive strength, permeability, microscopic mechanism.

CLC Number: 

  • U451+.2
[1] MIAO Ri-cheng, TANG Bei, QI Fei, JIANG Zhi-an, CUI Wei, . Discrete element method simulation of rock breaking by tunnel boring machine disc cutter considering the effects of random fractures [J]. Rock and Soil Mechanics, 2025, 46(S1): 541-552.
[2] ZHANG Xing-wen, CAO Jing, LEI Shu-yu, LI Yu-hong, CHENG Yun, ZHANG Ning-rui. Effect of fulvic acid environment on the structure and permeability of cement-soil containing humic acid [J]. Rock and Soil Mechanics, 2025, 46(S1): 249-261.
[3] LIU Jing, WANG Hao, YANG Xin, SU Jin-chen, ZHANG You-liang, . Field test study on reinforcement of tropical soil slope using microbial induced calcium carbonate precipitation [J]. Rock and Soil Mechanics, 2025, 46(S1): 343-353.
[4] LI Bin, SHEN Hai-meng, LI Qi, LI Xia-ying, . A numerical simulation of dynamic evolution of permeability during granite shear process under different confining pressures [J]. Rock and Soil Mechanics, 2025, 46(S1): 437-453.
[5] CAO Rui-dong, LIU Si-hong, TIAN Jin-bo, LU Yang, ZHANG Yong-gan, LI Fan, . Experimental study and predictive model for seepage characteristics of geotextiles for soilbags considering tensile deformation [J]. Rock and Soil Mechanics, 2025, 46(9): 2711-2720.
[6] ZHANG Tian-jun, TIAN Jia-wei, ZHANG Lei, PANG Ming-kun, PAN Hong-yu, MENG Wei, HE Sui-nan, . Permeability and tortuosity evolution of crushed coal under cyclic loading [J]. Rock and Soil Mechanics, 2025, 46(5): 1409-1418.
[7] XIAO Zhi-yong, WANG Gang, LIU Jie, DENG Hua-feng, ZHENG Cheng-cheng, JIANG Feng, . Improved apparent permeability model based on equivalent fractures and variable slip effects analysis [J]. Rock and Soil Mechanics, 2025, 46(5): 1466-1479.
[8] SHE Lei, ZHAO Yang, LI Yan-long, LI Dong-feng, SONG Qing, ZHENG Ji-guang, CHEN Chen, . Rapid estimation method for in-site rock mass mechanical parameters using tunnel boring machine tunneling parameters [J]. Rock and Soil Mechanics, 2025, 46(5): 1595-1604.
[9] YANG Liu, JI Ming-xiu, ZHAO Yan, GENG Zhen-kun, LI Si-yuan, MA Xiong-de, ZHANG Qian, . Influence mechanism of tight sandstone pore structure on two-phase displacement characteristics and CO2 storage efficienc [J]. Rock and Soil Mechanics, 2025, 46(4): 1187-1195.
[10] XUE Qin-pei, CHEN Hong-xin, FENG Shi-jin, LIU Xiao-xuan, XIE Wei, . Evolution of permeability characteristics and micro-mechanism of geopolymer cutoff wall materials under dry-wet cycling [J]. Rock and Soil Mechanics, 2025, 46(3): 811-820.
[11] CUI Wen-wen, DONG Xiao-qiang, LIU Xiao-yong, ZHAO Rui-yang, HE Gao-le, ZHANG Meng, ZHOU Lei, WU Xue-wen, . Hydration kinetics and hydration mechanism of red mud-based cementitious materials [J]. Rock and Soil Mechanics, 2025, 46(3): 867-880.
[12] SHEN Jun, CHENG Yin, JIN Xiao-ping, SI Ji-ping, YANG Tian-jun, YU Hao, YU Kun, . Experimental study on performance of waste slag based geopolymer stabilized silt clay [J]. Rock and Soil Mechanics, 2024, 45(S1): 147-156.
[13] ZHENG Si-wei, HU Ming-jian, HUO Yu-long, . Factors affecting permeability of calcareous sands and predictive models [J]. Rock and Soil Mechanics, 2024, 45(S1): 217-224.
[14] WEN Shao-jie, CHENG Wen-chieh, HU Wen-le, . Experimental study on gas breakthrough pressure and cyclic gas permeability characteristics of loess cover layer [J]. Rock and Soil Mechanics, 2024, 45(S1): 471-476.
[15] HUANG Nan, ZHU Bin, WANG Lu-jun, . A permeability model for gas hydrate-bearing sediments considering the changes in hydrate occurring habits [J]. Rock and Soil Mechanics, 2024, 45(8): 2387-2396.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!