Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (7): 2105-2116.doi: 10.16285/j.rsm.2023.1277

• Fundamental Theory and Experimental Research • Previous Articles     Next Articles

Study on piezoelectric properties and sensor properties of carbon fiber reinforced soil-cement

LIN Jiang-yuan, TONG Li-yuan, LI Hong-jiang, MA Hai-yang, LIU Wen-yuan, YAN Xin   

  1. Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
  • Received:2023-08-28 Accepted:2023-12-04 Online:2024-07-10 Published:2024-07-23

Abstract: Studies show that adding carbon fiber to concrete to form a conductive network can make concrete feel its own stress, strain, cracks, and damage according to the change of conductive network, and improve the strength and durability of concrete. In view of the self-sensing characteristics of carbon fiber, carbon fiber reinforced cement-based composites are put forward as a new intelligent sensing material. Through unconfined compressive strength test, resistivity test, microscopic test, and model test, the influence of fiber volume fraction and fiber length on unconfined compressive strength and resistivity change rate of carbon fiber reinforced cement-based composites are studied. A carbon fiber reinforced cement-based composites "sensor" is made according to the optimal ratio, which is implanted into cement-based composites components to establish the functional relationship between the sensor resistivity change rate and the stress of cement-based composites components, so as to realize the stress monitoring of cement-based composites components by the sensor. The results show that, in the study of the strength of carbon fiber reinforced cement-based composites, the unconfined compressive strength of carbon fiber reinforced cement-based composites is affected by both carbon fiber volume fraction and carbon fiber length, and the compressive strength increases first and then decreases with the increase of both. In the test range, 2% is the optimal volume fraction and 6 mm is the optimal fiber length. In the study of the resistivity change rate of carbon fiber reinforced cement-based composites, when the carbon fiber volume fraction is 1% and the fiber length is 3 mm, the resistivity change rate of the specimen is the largest, and the self-sensing sensitivity of carbon fiber reinforced cement-based composites is the best. There is an obvious exponential relationship between the resistivity change rate of the sensor embedded in the component and the stress of the cement-based composites component. Through establishing a stress prediction formula based on resistivity change rate, the stress state monitoring of the cement-based composites structure can be realized.

Key words: carbon fiber, cement soil, unconfined compressive strength, resistivity change rate, self-sensing, sensor

CLC Number: 

  • TU 442
[1] LIU Jing, WANG Hao, YANG Xin, SU Jin-chen, ZHANG You-liang, . Field test study on reinforcement of tropical soil slope using microbial induced calcium carbonate precipitation [J]. Rock and Soil Mechanics, 2025, 46(S1): 343-353.
[2] LI Shun-qun, ZHANG Chun-wei, ZHOU Yan, ZHANG Kai, LI You-bing, JING Le-wei, WANG Ying-hong, . Three-dimensional stress calculation under special conditions with part of test data missing [J]. Rock and Soil Mechanics, 2025, 46(5): 1419-1428.
[3] CUI Wen-wen, DONG Xiao-qiang, LIU Xiao-yong, ZHAO Rui-yang, HE Gao-le, ZHANG Meng, ZHOU Lei, WU Xue-wen, . Hydration kinetics and hydration mechanism of red mud-based cementitious materials [J]. Rock and Soil Mechanics, 2025, 46(3): 867-880.
[4] YU Kui, ZHANG Min, QIN Wen-quan, SUN Jing-wen, ZHANG Kai-xiang, SONG Li-qi, . Inversion analysis of deformation and void formation in buried pipelines induced by tunneling using distributed fiber-optic sensing [J]. Rock and Soil Mechanics, 2025, 46(3): 894-904.
[5] ZHAN Run-tao, YIN Xiao-meng , . Identification of consolidation model parameters using spatiotemporally varying pore water pressure measurements [J]. Rock and Soil Mechanics, 2025, 46(10): 3315-3328.
[6] SHEN Jun, CHENG Yin, JIN Xiao-ping, SI Ji-ping, YANG Tian-jun, YU Hao, YU Kun, . Experimental study on performance of waste slag based geopolymer stabilized silt clay [J]. Rock and Soil Mechanics, 2024, 45(S1): 147-156.
[7] JIANG Qi-wu, HUANG Ming, CUI Ming-juan, JIN Gui-xiao, PENG Yi-xin, . Study on the mechanism and optimal proportioning test of pea gravel backfill behind TBM tunnel linings reinforced with enzyme-induced calcium carbonate precipitation (EICP) technology [J]. Rock and Soil Mechanics, 2024, 45(7): 2037-2049.
[8] ZHENG Yi-wen, WU Jun, YANG Ai-wu, LI Bo, GU Long, . Feasibility study on the one-part geopolymer activated by solid sodium silicate for soft soil solidification [J]. Rock and Soil Mechanics, 2024, 45(7): 2072-2084.
[9] HE Zheng, XIE Mo-wen, WU Zhi-xiang, ZHAO Chen, SUN Guang-cun, XU Le, . Field measurement study on the pre-collapse inclination deformation characteristics of tension-cracking slope rock mass using micro-core-pile sensor [J]. Rock and Soil Mechanics, 2024, 45(11): 3399-3415.
[10] ZHU Huai-long, ZHU Bi-tang, LUO Ru-ping, XU Chang-jie, . Large-scale model experimental study on cyclic penetration process and vertical bearing characteristics of open-ended pipe piles [J]. Rock and Soil Mechanics, 2024, 45(11): 3173-3184.
[11] LIU Zhong-yu, HUANG Tong-tong, CAO Yong-qing, LIU Chao-fan. Permeability test and meso-structure analysis of biochar-cement soil [J]. Rock and Soil Mechanics, 2024, 45(10): 2929-2936.
[12] ZHANG Xiao-di, DUAN Bing, WU Jian, WANG Jin-chang, YANG Zhong-xuan, GONG Xiao-nan, XU Rong-qiao, . Analytical approach to axially loaded concrete core-cement soil composite pile [J]. Rock and Soil Mechanics, 2024, 45(1): 173-183.
[13] ZHANG Yan-mei, ZHANG Jian, YUAN Yan-hao, SUN Wen-xiu, . Experimental study of coastal petroleum-contaminated soil using nano-SiO2 and lime as additives [J]. Rock and Soil Mechanics, 2023, 44(S1): 259-267.
[14] DONG Xue-chao, GUO Ming-wei, WANG Shui-lin, . Sinking state prediction and optimal sensor placement of super large open caissons based on LightGBM [J]. Rock and Soil Mechanics, 2023, 44(6): 1789-1799.
[15] LI Li-hua, HUANG Chang, LI Wen-tao, LI Zi-jian, YE Zhi, . Study on mechanical and microscopic characterization of expansive soil solidified by rice husk ash-granulated blast furnace slag [J]. Rock and Soil Mechanics, 2023, 44(10): 2821-2832.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!