Rock and Soil Mechanics ›› 2025, Vol. 46 ›› Issue (1): 97-109.doi: 10.16285/j.rsm.2024.0288

• Fundamental Theory and Experimental Research • Previous Articles     Next Articles

A binary medium model for structural loess considering thermodynamic behavior of local bonding broken process

WANG Pan1, ZHI Bin1, LIU En-long2, WANG Xiao-chan3, DENG Bo-tuan1, LI Jin-hua1, ZHANG Hui1   

  1. 1. School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China; 2. College of Water Resources and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China; 3. College of Geological Engineering and Geomatics, Chang’an University, Xi’an, Shaanxi 710054, China
  • Received:2024-03-08 Accepted:2024-05-15 Online:2025-01-10 Published:2025-01-04
  • Supported by:
    This work supported by Youth Fund of Natural Science Basic Research Program of Shaanxi (2024JC-YBQN-0258), the Corps Youth Science and Technology Innovation Talents Project (Basic Research) (2023CB008-28) and the General Project―Social Development Field of Shaanxi Province Key R&D Program (2023-YBSF-506).

Abstract: Establishing a constitutive model that reflects the local bonding breakage process has always been a core task in soil mechanics and is crucial for solving engineering stability issues. Based on thermodynamic principles and breakage mechanics, this paper proposes a macro-micro thermodynamic constitutive model. This model quantitatively describes the thermodynamic behavior of local bonding breakage and the non-uniform distribution of stress-strain at the microscale. It improves the prediction accuracy of the model for deformation characteristics, which is similar to the Cambridge model in mathematical form. Firstly, based on the law of conservation of thermodynamic energy, the mathematical expression of structural breakage work during compression deformation was determined. It was found that the dissipated energy of breakage can be mainly divided into two parts: the frictional effect between bonded elements and frictional elements, and the irreversible transformation from bonded elements to frictional elements. Furthermore, a macro-micro constitutive model framework considering the thermodynamic behavior of local bonding breakage was established. Secondly, based on the constitutive framework and the deformation mechanism of loess (frictional, bonded, and damaged), the expressions for free energy, dissipated energy, and damage dissipated energy were determined. The damage yield function and elastic-plastic constitutive model considering the evolution laws of volume breakage and shear breakage were derived. Finally, the established model was used to predict the experimental data of other scholars, and its rationality and simulation advantages were verified through comparison. This model aligns better with thermodynamic principles, and its parameters are easy to determine.

Key words: structural loess, constitutive model, local broken, thermodynamics, binary-medium model

CLC Number: 

  • TU 411
[1] ZHAO Kai, MA Hong-ling, SHI Xi-lin, LI Yin-ping, YANG Chun-he, . Long-term stability assessment of salt caverns for compressed air energy storage based on creep-fatigue constitutive model [J]. Rock and Soil Mechanics, 2025, 46(S1): 1-12.
[2] HOU Ke-peng, JIANG Fan, ZHANG Chao, GONG Jing-han, . Surface morphology effect of soil-rock mixture-bedrock interface shear [J]. Rock and Soil Mechanics, 2025, 46(S1): 271-284.
[3] QU Jun-tong, SHI Qi-zhuang, GUO Ying-jie, ZHANG Xiang, LIU Yi, JIANG De-yang. Characteristics and damage mechanisms of ice deposits under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2025, 46(9): 2859-2872.
[4] YANG Ai-wu, CHENG Shu-xiao, LIANG Zhen-zhen, HUA Qian-qian, YANG Shao-peng. Combined effects of large-strain consolidation and creep in high-moisture dredger fill [J]. Rock and Soil Mechanics, 2025, 46(7): 1977-1987.
[5] DU Hai-long, JIN Ai-bing, QIN Wen-jing, SHANG Rui-hao, WANG Chuang-jiang, MA Sai, . Mechanical properties and damage characteristics of cement grouted coal and rock under uniaxial compression [J]. Rock and Soil Mechanics, 2025, 46(5): 1521-1533.
[6] ZHU Yuan-guang, WANG Xuan-yao, LIU Bin, LIU Xue-wei, XUE Hao-yuan, GENG Zhi, . Transversely isotropic creep damage constitutive model for layered rocks [J]. Rock and Soil Mechanics, 2025, 46(4): 1095-1108.
[7] WU Xiao-tian, YAO Yang-ping, WEI Ran, CUI Wen-jie. Numerical simulation of soil deformation induced by tunnel construction with unified hardening model [J]. Rock and Soil Mechanics, 2025, 46(3): 1013-1024.
[8] WANG Gui-lin, WANG Li, WANG Run-qiu, REN Jia-shan, . Shear constitutive model of penetrating sawtooth-like joint surface of red sandstone after dry-wet cycles [J]. Rock and Soil Mechanics, 2025, 46(3): 706-720.
[9] ZHANG Chun-shun, LIN Zheng-hong, YANG Dian-sen, CHEN Jia-rui, . Nonlinear elastic constitutive model of coarse-grained soils considering the effect of initial grain size distribution [J]. Rock and Soil Mechanics, 2025, 46(3): 750-760.
[10] TONG Sen-jie, HUANG Mao-song, SHI Zhen-hao, WANG Bin. Influence of full-strain-range non-linearity of sand on cone penetration response [J]. Rock and Soil Mechanics, 2025, 46(12): 3707-3714.
[11] YANG Nan, DENG Ya-hong, LIU Xue-ya, MU Huan-dong. Creep deformation characteristics and constitutive model of loess [J]. Rock and Soil Mechanics, 2025, 46(12): 3797-3810.
[12] GENG Xiao-wei, CHEN Cheng, SUN Zhong-hua, LI Wei, WANG Yong, XU Meng-bing, YU Song, . A constitutive model of sand considering fabric anisotropy based on generalized potential theory [J]. Rock and Soil Mechanics, 2025, 46(10): 3175-3186.
[13] YANG Ke, YU Xiang, HE Xiang, HOU Yong-qiang, ZHANG Lian-fu, . Energy evolution and damage characteristics of gangue cemented backfill in different water content states [J]. Rock and Soil Mechanics, 2025, 46(1): 26-42.
[14] XUE Yang, MIAO Fa-sheng, WU Yi-ping, WEN Tao, WANG Yan-kun, . Uncertainty quantification in the parameters of soil constitutive models [J]. Rock and Soil Mechanics, 2024, 45(9): 2797-2807.
[15] ZHOU Pan, LI Jing-pei, LI Pan-pan, LIU Geng-yun, ZHANG Chao-zhe, . Prediction method for load-settlement response of a single pile in sand based on an interface constitutive model [J]. Rock and Soil Mechanics, 2024, 45(6): 1686-1698.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!