Rock and Soil Mechanics ›› 2025, Vol. 46 ›› Issue (4): 1141-1152.doi: 10.16285/j.rsm.2024.0832

• Fundamental Theory and Experimental Research • Previous Articles     Next Articles

Influences of fines content on strength deterioration and static shear characteristics of gravelly soil subgrade

ZHANG Tao-yi1, 2, 3, WANG Jia-quan1, 2, 3, LIN Zhi-nan1, 2, 3, TANG Yi1, 2, 3   

  1. 1. College of Civil and Architectural Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China; 2. Guangxi Zhuang Autonomous Region Engineering Research Center of Geotechnical Disaster and Ecological Control, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China; 3. Guangxi University Key Laboratory of Disaster Prevention and Mitigation and Prestress Technology, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China
  • Received:2024-07-03 Accepted:2024-11-19 Online:2025-04-11 Published:2025-04-11
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52468047), the Key Program of Natural Science Foundation of Guangxi (2022GXNSFDA035081), the High-Level Innovation Team and Outstanding Scholars Program of Guangxi Institutions of Higher Learning of China ([2020] 6), the Innovation Project of Guangxi University of Science and Technology Graduate Education (GKYC202463), and the Project of Improving the Basic Scientific Research Ability of Young and Middle-Aged Teachers in Guangxi Colleges and Universities (2020KY08026).

Abstract: Given the insufficiency in research on the mechanism of fine particle impact on gravelly soil subgrade deterioration, a series of saturated gravelly soil consolidated drained triaxial shear tests was conducted using the GDS triaxial testing system under varying fines contents and effective confining pressures to investigate the effect of fine particle contamination on the static shear characteristics of gravelly soil. The results indicate that: (1) As the fines content increases, the stress-strain curve development pattern transitions from strain softening to strain hardening, with a critical threshold at a fines content of Fc=15%. (2) The addition of fine particles leads to a decrease in the principal stress ratio, brittleness index, peak strength, cohesion, and internal friction angle of the gravelly soil, while the degradation indices increase. The relationship between the degradation indices of peak strength and cohesion and fines content can be described by quadratic functions, and the degradation index of the internal friction angle by a cubic function. (3) With increasing fines content, critical state parameters decrease. The effective stress path shows retracing behavior, becomes shorter, and shifts to the left. (4) The addition of fine particles results in a decrease in the secant modulus, and the volumetric strain-axial strain curve changes from contractive-dilative to purely contractive.

Key words: fines content, gravelly soil, triaxial test, mechanical properties, deterioration mechanism

CLC Number: 

  • TU 452
[1] WU Jun, MIN Yi-fan, ZHENG Xi-yao, HAN Chen, NIU Fu-jun, ZHU Bao-lin, . Compressive deformation properties of recycled fine aggregates prepared by geopolymer-stabilized sludge method [J]. Rock and Soil Mechanics, 2025, 46(S1): 159-170.
[2] DONG Lin, CHEN Qiang, XIA Kun, LI Yan-cang, LI Yan, WANG Xiao-lei. Effects of plasticity on liquefaction and cyclic softening characteristics of fine-grained soils [J]. Rock and Soil Mechanics, 2025, 46(S1): 228-237.
[3] ZHANG Chun-rui, JI Hong-guang, FU Zhen, ZHANG Yue-zheng, SONG Yu, TIAN Zhu-hua, FAN Wen-bo, . Influence of dolomite on the physical and mechanical properties of siltstone [J]. Rock and Soil Mechanics, 2025, 46(9): 2661-2675.
[4] HUANG De-xin, WEN Tao, CHEN Ning-sheng, . Methods for determining residual strength of rock considering energy evolution [J]. Rock and Soil Mechanics, 2025, 46(9): 2825-2836.
[5] QU Jun-tong, SHI Qi-zhuang, GUO Ying-jie, ZHANG Xiang, LIU Yi, JIANG De-yang. Characteristics and damage mechanisms of ice deposits under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2025, 46(9): 2859-2872.
[6] XU Wei-wei, XIE Zun-dang, FU Zhong-zhi, MI Zhan-kuan, . Research and application on true triaxial test of coarse-grained soil using Shen’s elastoplastic model [J]. Rock and Soil Mechanics, 2025, 46(8): 2559-2572.
[7] ZHANG Pei-sen, WANG Hong-wei, HONG Huang, XU Da-qiang, CHEN Zeng-bao, DENG Yun-chi, LIANG Zhan, LI Jin-kun, CHEN Wen-hao, CUI Qian, . Mechanical properties and energy evolution law of deep-buried sandstone under seepage-mining stress coupling [J]. Rock and Soil Mechanics, 2025, 46(7): 1997-2010.
[8] CHEN Jia-rui, FAN Bao-yun, YE Jian-hong, ZHANG Chun-shun, . Particle breakage and its evolution model of calcareous sand through triaxial tests [J]. Rock and Soil Mechanics, 2025, 46(7): 2095-2105.
[9] HU Feng-hui, FANG Xiang-wei, SHEN Chun-ni, WANG Chun-yan, SHAO Sheng-jun, . Experiment on particle breakage, strength, and dilatancy of coral sand under true triaxial conditions [J]. Rock and Soil Mechanics, 2025, 46(7): 2147-2159.
[10] ZHENG Shu-wen, LIU Song-yu, LI Di, TONG Li-yuan, WU Kai, . Experimental study on mechanical properties of expansive soil-based lightweight foam soil [J]. Rock and Soil Mechanics, 2025, 46(5): 1455-1465.
[11] SONG Yong-jun, LU Yun-long, WANG Shuang-long, XIE Li-jun, CAO Jing-hui, AN Xu-chen, . Evolution characteristics of unfrozen water content and its influence on mechanical properties of rock during freeze-thaw process [J]. Rock and Soil Mechanics, 2025, 46(4): 1049-1059.
[12] TANG Xian-xi, ZHANG Xu-jun, LI Hao-jie, . Evaluation of mechanical properties and analysis of solidification principles of loess solidified with steel slag-coal gangue geopolymer [J]. Rock and Soil Mechanics, 2025, 46(4): 1205-1214.
[13] WANG Meng-jie, ZHANG Sha-sha, YANG Xiao-hua, ZHANG Chao, YAN Chang-gen, . Dynamic characteristics of silty clay in flood irrigation areas under cyclic loading [J]. Rock and Soil Mechanics, 2025, 46(4): 1215-1227.
[14] CHANG Jian-mei, TIAN Shi-long, LI Xiang, FENG Huai-ping, KUVANDIK Lesov, . Dynamic shear performance and meso-effect of railway ballast improved with tire-derived aggregate of different shapes [J]. Rock and Soil Mechanics, 2025, 46(3): 721-728.
[15] JIN Lei, LI Jing-jing, LI Xin-ming, SUN Han-qing, . Finite difference method-discrete element method simulation of flexible boundary conditions and their influence on the drained and undrained triaxial shear behavior of sands [J]. Rock and Soil Mechanics, 2025, 46(3): 980-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!