›› 2014, Vol. 35 ›› Issue (4): 1069-1076.

• 岩土工程研究 • 上一篇    下一篇

玻璃纤维增强聚合物抗浮锚杆抗拔性能试验研究与机制分析

张明义,寇海磊,白晓宇,张宗强   

  1. 青岛理工大学 土木工程学院,山东 青岛 266033
  • 收稿日期:2013-01-10 出版日期:2014-04-10 发布日期:2014-04-18
  • 通讯作者: 寇海磊,男,1984年生,博士,讲师,主要从事土力学及桩基础领域方面的研究工作。E-mail: kou123321@126.com E-mail:zmy58@163.com
  • 作者简介:张明义,男,1958年生,教授,博士生导师,主要从事土力学及地基基础的试验、教学和研究工作
  • 基金资助:

    国家自然科学基金资助项目(No. 51278261)。

Experimental study and mechanism analysis of the anti-pulling behavior of glass fiber reinforced polymer anti-float anchor

ZHANG Ming-yi,KOU Hai-lei,BAI Xiao-yu,ZHANG Zong-qiang   

  1. School of Civil Engineering, Qingdao Technological University, Qingdao, Shandong 266033, China
  • Received:2013-01-10 Online:2014-04-10 Published:2014-04-18

摘要: 抗浮锚杆作为一种竖向锚固技术在我国许多地区广泛应用,锚杆作为抗浮结构的核心其性能受到极大关注。但因钢材易腐蚀,传统金属锚杆的耐久性受到质疑,特别是地铁等地下工程存在杂散电流,限制了金属抗浮锚杆的应用。玻璃纤维增强聚合物(GFRP)抗浮锚杆是一种由树脂基体和玻璃纤维复合而成的新材料,与金属锚杆相比,它具有耐腐蚀、抗拉强度高、自重轻等优良特性。通过植入式裸光纤传感测试技术对GFRP抗浮锚杆的界面应力分布、荷载传递规律及破坏机制进行了研究,论证了GFRP抗浮锚杆使用的适宜性。试验表明,GFRP抗浮锚杆破坏以杆体基体材料剪切破坏为主, 28 mm锚杆极限抗拔力为250 kN,能够满足工程需要;杆体轴力沿深度方向逐渐递减,并且超过一定长度后杆体不再受力。结果显示,中风化岩地区,当锚固段长度为3.95~6.95 m时,轴力影响深度范围约为3.7 m,说明GFRP抗浮锚杆同样存在临界锚固深度问题。锚杆界面剪应力呈不均匀分布,剪应力峰值随荷载的增加逐渐向下转移,同时0值点也向杆体深部转移。研究成果可为GFRP抗浮锚杆应用于工程实际提供依据。

关键词: 非金属, 玻璃纤维增强聚合物, 抗浮锚杆, 裸光纤, 剪切破坏

Abstract: As a kind of vertical anchoring technique, the anti-float anchor has been widely used in China, whose performance has begun to receive more attentions from researchers. However, steels may be eroded easily by groundwater or chemical solutions, which will cause the reductions of mechanical strength and service life, especially in subway engineering the steel anti-float anchor is forbidden. Glass fiber reinforced polymer (GFRP) anti-float anchor is a new kind of material which is composed of resin matrix and glass fiber. Compared with steel anchor, the GFRP anti-float anchor has higher strength, corrosion-resistance and light weight behavior. The field tests show the feasibility of GFRP anti-float anchor through embedded bare fiber optics sensor technique. According to the test results, the GFRP anti-float anchor stress-strain behaviors, load transfer mechanism and failure mechanism are considered. The test indicates that GFRP anti-float anchor is basically about shear failure and pullout capacity of anchors with ? 28 mm are 250 kN, which can be satisfied with engineering demands. The axial forces of anchors fall gradually with depth, and it will not bear load beyond certain length. Results show that the effect distance of axial forces is about 3.7 m when the length of bond part is in range of 3.95~6.95 m in moderately weathered granite,which indicates that GFRP anti-float anchors also exist critical anchorage depth. The shear stress on interface of anchor is not evenly distributed, which peak value is being driven down, and so as to the zero value. The research results can provide evidence for application of GFRP anti-float anchor.

Key words: non-metal, glass fiber reinforced polymer, anti-float anchor, bare fiber, shear failure

中图分类号: 

  • TU 437.1
[1] 樊科伟, 刘斯宏, 廖洁, 方斌昕, 王建磊, . 袋装石土工袋剪切力学特性试验研究[J]. 岩土力学, 2020, 41(2): 477-484.
[2] 许江, 雷娇, 刘义鑫, 邬君宇, . 充填物性质影响结构面剪切特性试验研究[J]. 岩土力学, 2019, 40(11): 4129-4137.
[3] 白晓宇,张明义,匡 政,王永洪,闫 楠,朱 磊,. 光纤光栅传感技术在GFRP抗浮锚杆现场拉拔试验中的应用[J]. , 2018, 39(10): 3891-3899.
[4] 程立朝 ,许 江 ,冯 丹 ,田傲雪 ,刘义鑫,. 岩石剪切细观开裂演化与贯通机制分析[J]. , 2016, 37(3): 655-664.
[5] 白晓宇 ,张明义,刘 鹤 ,寇海磊,. 风化岩地基全螺纹玻璃纤维增强聚合物抗浮锚杆承载特征现场试验[J]. , 2014, 35(9): 2464-2472.
[6] 杨 扬,卢坤林,朱大勇. 局部剪切破坏模式下的无重地基承载力[J]. , 2014, 35(1): 232-237.
[7] 宋福贵,王炳龙,黄大维,张 超,李培妍. 钢套管灌注群桩施工顺序对多隧道的影响[J]. , 2012, 33(8): 2330-2336.
[8] 刘东燕,孙海涛,张 艳. 采动影响下采区上覆岩层层间剪切滑移模型分析[J]. , 2010, 31(2): 609-614.
[9] 樊赟赟,王思敬,王恩志,刘晓丽. 岩土材料剪切破坏点安全系数的研究[J]. , 2009, 30(S2): 200-203.
[10] 梁庆国,李德武. 对岩土工程有限元强度折减法的几点思考[J]. , 2008, 29(11): 3053-3058.
[11] 章定文,刘松玉. 三向应力下土体水力劈裂的破坏机理及适用性探讨[J]. , 2006, 27(S2): 66-70.
[12] 章 伟 ,郑进凤 ,于广明 ,徐园园 ,张春会,. 覆岩离层形成的力学判据研究[J]. , 2006, 27(S1): 275-278.
[13] 陈棠茵 ,王贤能,. 抗浮锚杆应力-应变状态的线弹性理论分析[J]. , 2006, 27(11): 2033-2036.
[14] 王学滨. 剪切带图案的复杂性及应力-应变曲线的离散性[J]. , 2005, 26(S1): 25-30.
[15] 李培勇,杨 庆,栾茂田. Hoek-Brown岩石破坏经验判据确定岩石地基承载力的修正[J]. , 2005, 26(4): 664-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宫伟力,安里千,赵海燕,毛灵涛. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. , 2010, 31(2): 371 -376 .
[2] 孙曦源,栾茂田,唐小微. 饱和软黏土地基中桶形基础水平承载力研究[J]. , 2010, 31(2): 667 -672 .
[3] 王明年,郭 军,罗禄森,喻 渝,杨建民,谭忠盛. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. , 2010, 31(4): 1157 -1162 .
[4] 胡勇刚,罗 强,张 良,黄 晶,陈亚美. 基于离心模型试验的水泥土搅拌法加固斜坡软弱土地基变形特性分析[J]. , 2010, 31(7): 2207 -2213 .
[5] 谭峰屹,姜志全,李仲秋,颜惠和. 附加质量法在昆明新机场填料压实密度检测中的应用研究[J]. , 2010, 31(7): 2214 -2218 .
[6] 柴 波,殷坤龙,肖拥军. 巴东新城区库岸斜坡软弱带特征[J]. , 2010, 31(8): 2501 -2506 .
[7] 王光进,杨春和,张 超,马洪岭,孔祥云,侯克鹏. 超高排土场的粒径分级及其边坡稳定性分析研究[J]. , 2011, 32(3): 905 -913 .
[8] 胡海军,蒋明镜,赵 涛,彭建兵,李 红. 制样方法对重塑黄土单轴抗拉强度影响的初探[J]. , 2009, 30(S2): 196 -199 .
[9] 李 敏,柴寿喜,王晓燕,魏 丽. 以强度增长率评价麦秸秆加筋盐渍土的加筋效果[J]. , 2011, 32(4): 1051 -1056 .
[10] 徐 冲,刘保国,刘开云,郭佳奇. 基于粒子群-高斯过程回归耦合算法的滑坡位移时序分析预测智能模型[J]. , 2011, 32(6): 1669 -1675 .