›› 2015, Vol. 36 ›› Issue (12): 3365-3372.doi: 10.16285/j.rsm.2015.12.004

• 基础理论与实验研究 • 上一篇    下一篇

高铁路基粗颗粒土水力学参数测试方法研究

陈仁朋1, 2,吴 进1, 2,亓 帅1, 2,王瀚霖1, 2   

  1. 1.浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058;2.浙江大学 岩土工程研究所,浙江 杭州 310058
  • 收稿日期:2014-04-22 出版日期:2015-12-11 发布日期:2018-06-14
  • 作者简介:陈仁朋,男,1972年生,博士,教授,主要从事软黏土工程学、基础工程及环境岩土工程的教学和科研工作
  • 基金资助:

    国家杰出青年科学基金(No. 51225804);国家自然科学基金高速铁路基础研究联合基金重点支持项目(No. U1234204);中国铁路总公司重大科研项目(No. 2014G006)。

A method for measuring hydraulic parameters of coarse-grained soils for high-speed railway subgrade

CHEN Ren-peng1, 2, WU Jin1, 2, QI Shuai1, 2, WANG Han-lin1, 2   

  1. 1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China; 2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
  • Received:2014-04-22 Online:2015-12-11 Published:2018-06-14
  • Supported by:

    Project supported by National Science Fund for Distinguished Young Scholars (Grant No. 51225804), Key Program of Joint Foundation of National Science Foundation of China and Ministry of Railways for Fundamental Research of High-Speed Railway (Grant No. U1234204) and Major Research Program of China Railways Corporation (Grant No. 2014G006).

摘要: 高铁路基粗颗粒土的水力学特性对路基内部水分运移及路基的长期累积变形有重要影响。而对这种高压实度的粗颗粒土,常规非饱和土试验仪器存在试样尺寸小、制样难度大的缺点,难以应用。介绍了一种用于测试高压实度路基粗颗粒土-水力学参数的试验装置,利用张力计和时域反射计量器,分别测量路基粗颗粒土在浸湿、干燥阶段不同高度处土体基质吸力、介电常数的变化情况,获得高压实度下高铁路基粗颗粒土土-水特征曲线;并通过瞬态剖面法获得路基粗颗粒土非饱和渗透系数与基质吸力的关系。试验结果表明,该套装置能够适用于最大粒径为20 mm的粗颗粒土,试样压实度最大可达到0.95。通过对一组试验结果分析,并结合Ekblad等试验结果,发现随着填料细颗粒含量增大,?(与进气值有关的参数)值逐渐减小,土体进气值增加;粒径越大,细颗粒含量越低,土体储水能力越低,对应n(与排水程度有关的参数)值越大。为路基粗颗粒土-水力学参数的测定提供了方法。

关键词: 路基粗颗粒土, 渗透柱, 时域反射计量器, 基质吸力, 土-水特征曲线, 非饱和渗透系数

Abstract: Hydraulic characteristics of coarse-grained soil for high-speed railway subgrade profoundly influence internal moisture migration and long-term accumulative deformation of the subgrade. Conventional test methods have many disadvantages such as small size of sample and difficulties involved in sample preparation in determining hydraulic characteristics of such coarse-grained soil with high compactness, and thus can hardly be applied. A test device for determining hydraulic parameters of coarse-grained soil is presented thoroughly in this paper. Tensiometers and time domain reflectometers (TDR) are installed in the test device, allowing the measurement of matric suction and dielectric constant of coarse-grained soil at different altitudes during wet and dry stage; and consequently the soil-water characteristic curve (SWCC) of coarse-grained soil of high-speed railway subgrade with high compactness can be obtained. Also, the relationship bewteen unsaturated hydraulic conductivity and matrix suction of such soil can be obtained by transient profile method. The test result indicates that this device can be applied to the coarse-grained soil whose maximum particle size is 20 mm and whose degree of compaction may be up to 0.95. By analysing a group of experiment data and refering to data from Ekblad’s experiments, it is found that ? ( a parameter related to air entry value )decreases and air entry value increases with the increase of fine particle content in such soil, and that the largeness of particle size and low concent of fine particle suggest a low water storage capacity and high value of n. This article will provide a method for measuring hydraulic parameters of coarse-grained soils of subgrade.

Key words: coarse-grained soil, infiltration column, time domain reflectometer (TDR), matric suction, soil water characterisic curve, unsaturated hydraulic conductivity

中图分类号: 

  • TU 432
[1] 陈仁朋, 王朋飞, 刘鹏, 程威, 康馨, 杨微, . 路基煤矸石填料土-水特征曲线试验研究[J]. 岩土力学, 2020, 41(2): 372-378.
[2] 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560.
[3] 王欢, 陈群, 王红鑫, 张文举, . 不同压实度和基质吸力的粉煤灰三轴试验研究[J]. 岩土力学, 2019, 40(S1): 224-230.
[4] 洪本根, 罗嗣海, 胡世丽, 王观石, 姚康, . 基质吸力对非饱和离子型稀土抗剪强度的影响[J]. 岩土力学, 2019, 40(6): 2303-2310.
[5] 陶高梁, 吴小康, 甘世朝, 肖衡林, 马 强, 罗晨晨, . 不同初始孔隙比下非饱和黏土渗透性 试验研究及模型预测[J]. 岩土力学, 2019, 40(5): 1761-1770.
[6] 王娟娟, 郝延周, 王铁行. 非饱和压实黄土结构特性试验研究[J]. 岩土力学, 2019, 40(4): 1351-1357.
[7] 郑国锋, 郭晓霞, 邵龙潭, . 基于状态曲面的非饱和土强度准则及其验证[J]. 岩土力学, 2019, 40(4): 1441-1448.
[8] 张 昭, 程靖轩, 刘奉银, 齐吉琳, 柴军瑞, 李会勇, . 基于土颗粒级配预测非饱和 渗透系数函数的物理方法[J]. 岩土力学, 2019, 40(2): 549-560.
[9] 李明玉, 孙文静. 黏土掺入生物炭后的持水特性及其影响机制[J]. 岩土力学, 2019, 40(12): 4722-4730.
[10] 包小华, 廖志广, 徐长节, 庞小朝, 谢雄耀, 崔宏志, . 不同渗流边界条件下粉砂边坡失稳模型试验研究[J]. 岩土力学, 2019, 40(10): 3789-3796.
[11] 陶高梁,李 进,庄心善,肖衡林,崔惜琳,徐维生. 利用土中水分蒸发特性和微观孔隙分布规律确定SWCC残余含水率[J]. , 2018, 39(4): 1256-1262.
[12] 毕 骏,谌文武,戴鹏飞,林高潮, . 校正系数对不同形式的Van Genuchten方程各拟合参数的影响[J]. , 2018, 39(4): 1302-1310.
[13] 陶高梁,柏 亮,袁 波,甘世朝. 土-水特征曲线与核磁共振曲线的关系[J]. , 2018, 39(3): 943-948.
[14] 黎澄生,孔令伟,柏 巍,安 然,李甜果, . 土-水特征曲线滞后阻塞模型[J]. , 2018, 39(2): 598-604.
[15] 刘星志,刘小文,陈 铭,谷明晗. 基于3个不等粒径颗粒接触模型的土-水特征曲线[J]. , 2018, 39(2): 651-656.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 刚,李术才,王明斌. 渗透压力作用下加锚裂隙岩体围岩稳定性研究[J]. , 2009, 30(9): 2843 -2849 .
[2] 刘玉成,曹树刚,刘延保. 可描述地表沉陷动态过程的时间函数模型探讨[J]. , 2010, 31(3): 925 -931 .
[3] 介玉新,杨光华. 基于广义位势理论的弹塑性模型的修正方法[J]. , 2010, 31(S2): 38 -42 .
[4] 杨建民,郑 刚. 基坑降水中渗流破坏归类及抗突涌验算公式评价[J]. , 2009, 30(1): 261 -264 .
[5] 周 华,王国进,傅少君,邹丽春,陈胜宏. 小湾拱坝坝基开挖卸荷松弛效应的有限元分析[J]. , 2009, 30(4): 1175 -1180 .
[6] 叶 飞,朱合华,何 川. 盾构隧道壁后注浆扩散模式及对管片的压力分析[J]. , 2009, 30(5): 1307 -1312 .
[7] 罗 强 ,王忠涛 ,栾茂田 ,杨蕴明 ,陈培震. 非共轴本构模型在地基承载力数值计算中若干影响因素的探讨[J]. , 2011, 32(S1): 732 -0737 .
[8] 王云岗 ,章 光 ,胡 琦. 斜桩基础受力特性研究[J]. , 2011, 32(7): 2184 -2190 .
[9] 龚维明,黄 挺,戴国亮. 海上风电机高桩基础关键参数试验研究[J]. , 2011, 32(S2): 115 -121 .
[10] 汪成兵. 均质岩体中隧道围岩破坏过程的试验与数值模拟[J]. , 2012, 33(1): 103 -108 .