›› 2017, Vol. 38 ›› Issue (S1): 181-188.doi: 10.16285/j.rsm.2017.S1.021

• 基础理论与实验研究 • 上一篇    下一篇

CO2地质封存泄漏研究进展

谢 健1,魏 宁2,吴礼舟1, 3,张可霓4,许 模1, 3   

  1. 1. 成都理工大学 环境与土木工程学院,四川 成都610059;2. 中国科学院武汉岩土力学研究所,湖北 武汉430071; 3. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都610059;4. 同济大学 机械与能源工程学院,上海200092
  • 收稿日期:2017-02-25 出版日期:2017-06-22 发布日期:2018-06-05
  • 作者简介:谢健,男,1978年生,博士,讲师,主要从事地下多相流数值模拟方面的研究工作
  • 基金资助:

    国家自然科学基金项目(No.41672282)

Progress in leakage study of geological CO2 storage

XIE Jian1, WEI Ning2, WU Li-zhou1, 3, ZHANG Ke-ni4, XU Mo1, 3   

  1. 1. College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059 China; 2. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 3. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China; 4. School of Mechanical and Energy Engineering, Tongji University, Shanghai 200092, China
  • Received:2017-02-25 Online:2017-06-22 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Scientific Foundation (41672282).

摘要: CO2地质封存(GCS)是一项将CO2注入并且永久封存于地下含水层或废弃油气储层等地质体内的CO2减排技术。由于场地地质条件和人类开发活动导致的不确定性,注入储层的CO2可通过泄漏废弃井、断层或裂缝以及盖层的“薄弱带”等途径发生泄漏。基于对国内外文献的广泛调研,综述了GCS泄漏及封存安全的研究进展。CO2沿钻井泄漏一般是因为化学或力学作用导致CO2沿钻井环空水泥、井筒桥塞或围岩破碎带发生泄漏。CO2注入储层可能导致盖层破裂,激活原本闭合的断层或断层面滑动。CO2沿断层/裂缝泄漏主要受有效渗透率、裂缝开度等因素影响。盖层泄漏的方式可归纳为渗透泄漏、扩散泄漏和沿裂隙泄漏3种。CO2透过盖层的扩散泄漏对于大时空尺度CO2地质封存泄漏评估不应忽视。CO2泄漏通常会导致受影响的含水层内地下水的pH值减小、盐度升高、离子增多等地球化学响应,甚至存在自由态CO2。含水层内流体压力和地球化学特征可用于有效监测封存CO2、咸水与其他流体的泄漏。GCS泄漏研究目前还十分有限,我国尤其缺乏泄漏的定量研究。

关键词: CO2捕集和封存(CCS), CO2地质封存(GCS), 泄漏, 封存安全, 咸水层

Abstract: Geological CO2 storage(GCS) is a technology for carbon emission-cut, by injecting anthropogenic CO2 for long-term storage into underground aquifers or depleted hydrocarbon reservoirs. Because of the uncertainties induced by geological site condition and human activities, injecting CO2 into the reservoir may lead to leakage through abandoned wells, faults, fractures, and the "weak zones" in the caprock. A comprehensive review on GCS-associated leakage and safety issues was made, based on an extensive investigation of both domestic and international literature. Leakage from a wellbore may occur through the annulus cement, well plugs or the fracture zone of the contact rocks, due to chemical corrosion and/or mechanical failure. Injecting massive amount of CO2 into reservoirs may induce fractures in the seal, activation of potential faults and their slip. Leakage of CO2 along faults/fractures is mainly affected by factors such as the effective permeability and fracture aperture. Leakage through the caprock can be seepage, diffusive or one that occurs through fissures. The diffusive leakage through the caprock should not be neglected when assessing leakage for large-scale GCS projects. Leakage of CO2/brine into the overlying aquifer causes its variation in geochemistry such as a lower pH, higher salinity, more ions, or even the presence of free CO2. Monitoring of pressure and sampling in the overlying aquifer can be effective to identify CO2 leakage from the underlying reservoir. Research on GCS-associated leakage is very limited, with a particular lack of quantitative studies in China.

Key words: CO2 capture and storage(CCS), geological CO2 storage(GCS), leakage, safety of storage, saline aquifer

中图分类号: 

  • TU 473.1

[1] 陈祥胜, 李银平, 施锡林, 叶良良, 杨春和, . 地下盐穴储气库泄漏原因及防治措施研究[J]. 岩土力学, 2019, 40(S1): 367-373.
[2] 陈祥胜,李银平,尹洪武,葛鑫博,施锡林,杨春和, . 多夹层盐矿地下储气库气体渗漏评价方法[J]. , 2018, 39(1): 11-20.
[3] 马玖辰,王昌凤,朱龙虎,刘雪玲,. 滨海咸水储层微纳米颗粒形貌特征对其运移行为的影响[J]. , 2017, 38(8): 2270-2278.
[4] 李 琦,石 晖,杨多兴,. 碳封存项目井喷CO2扩散危险水平分级方法研究[J]. , 2016, 37(7): 2070-2078.
[5] 谢 健 ,张可霓 ,王永胜 ,覃莉清 ,郭朝斌,. 鄂尔多斯深部咸水层CO2地质封存效果评价[J]. , 2016, 37(1): 166-174.
[6] 马玖辰 ,武春彬 ,刘雪玲 ,张志刚,. 同期采灌储能模式浅层咸水介质渗透性演化过程研究[J]. , 2015, 36(7): 1883-1891.
[7] 张 帆 ,周 辉 ,吕 涛 ,胡大伟 ,盛 谦 ,胡其志,. CO2注入下岩层变形和流体运移分析(I):两相流-岩层耦合模型[J]. , 2014, 35(9): 2549-2554.
[8] 匡冬琴 ,李 琦 ,王永胜 ,王秀杰 ,林 青 ,魏晓琛 ,宋然然,. 神华碳封存示范项目中CO2注入分布模拟[J]. , 2014, 35(9): 2623-2633.
[9] 张强勇 ,王保群 ,向 文,. 盐岩地下储气库风险评价层次分析模型及应用[J]. , 2014, 35(8): 2299-2306.
[10] 张 帆 ,周 辉 ,吕 涛 ,胡大伟 ,盛 谦 ,肖本林,. 二氧化碳注入下岩层变形和流体运移分析:(II)实例分析[J]. , 2014, 35(10): 2888-2893.
[11] 魏 宁,李小春,王 颖,王 燕,任海洋,高 帅. 不同温压条件下泥质粉砂岩二氧化碳突破压的试验研究[J]. , 2014, 35(1): 98-104.
[12] 凌璐璐 ,许雅琴 ,王永胜 ,张可霓 . 数值模拟在CO2地质封存示范项目中的应用[J]. , 2013, 34(7): 2017-2022.
[13] 杨天春,. 基于附加层法的非规则剖面的瑞利波频散特性研究[J]. , 2013, 34(12): 3365-3371.
[14] 刁玉杰,张森琦,郭建强,李旭峰,范基姣,贾小丰. 深部咸水层二氧化碳地质储存场地选址储盖层评价[J]. , 2012, 33(8): 2422-2428.
[15] 唐巨鹏 ,潘一山 ,梁政国 . 断层构造对北票矿区煤层气地表泄漏的影响[J]. , 2007, 28(4): 694-698.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!