›› 2018, Vol. 39 ›› Issue (3): 1009-1019.doi: 10.16285/j.rsm.2017.0926

• 岩土工程研究 • 上一篇    下一篇

平推式滑坡运动距离计算模型

唐 然1, 2,许 强1,吴 斌3,范宣梅1   

  1. 1. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059;2. 四川省地质工程勘察院,四川 成都 610072; 3. 深圳市水务规划设计院,广东 深圳 518000
  • 收稿日期:2017-05-01 出版日期:2018-03-12 发布日期:2018-06-06
  • 通讯作者: 许强,男,1968年生,博士,教授,主要从事地质灾害预测评价及防治处理方面的教学与研究工作。E-mail: xuqiang_68@126.com E-mail:546488149@qq.com
  • 作者简介:唐然,男,1983年生,博士研究生,高级工程师,主要从事地质灾害防治与监测预警方面的研究工作。
  • 基金资助:

    国家创新研究群体科学基金(No.41521002);国家自然科学基金重点项目(No.41630640)。

Method of sliding distance calculation for translational landslides

TANG Ran1, 2, XU Qiang1, WU Bing3, FAN Xuan-mei1   

  1. 1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (SKLGP), Chengdu University of Technology, Chengdu, Sichuan 610059, China; 2. Sichuan Institute of Geology Engineering Investigation, Chengdu, Sichuan 610072, China; 3. Shenzhen Water Planning and Design Institute, Shenzhen, Guangdong 518000, China
  • Received:2017-05-01 Online:2018-03-12 Published:2018-06-06
  • Supported by:

    This work was supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (41521002) and the Key Program of National Natural Science Foundation of China (41630640).

摘要: 平推式滑坡是四川盆地红层地区和三峡库区普遍存在的一类十分特殊的滑坡。多发育于近水平砂、泥岩互层的斜坡中,岩层倾角一般仅3°~5°,最陡者也不超过10°。基于平推式滑坡的地质力学模型及运动过程分析,利用能量守恒的原理推导了平推式滑坡运动距离的理论计算公式。进行了3组物理模型模拟试验,第Ⅰ组试验模拟滑坡后部裂缝在不同宽度及水头高度作用下滑坡体的运动距离,对推导的理论公式进行校验。通过对比分析认为,平推式滑坡前缘剪出口地下水排泄状态呈少量点状排泄时,滑坡基底扬压力分布形态整体上与矩形更加接近。为了进一步校验理论公式,进行了第Ⅱ组、第Ⅲ组试验,每组分别固定初始水头高度和初始裂缝宽度,模型设置了前缘整体渗水和完全堵塞两种情况。物理模拟试验验证了理论公式的可靠性和适用性。将理论公式应用于狮子山滑坡运动距离的计算,应用结果表明计算公式适用性良好。研究成果对平推式滑坡防治具有一定的指导意义。

关键词: 平推式滑坡, 运动距离, 计算模型, 物理模拟, 扬压力分布特征

Abstract: Translational landslides are widely spread in red layers area in Sichuan Basin. This type of landslide develops in sub-horizontal bedrock composed of sandstone and mudstone, normally with the dip angle of 3 to 5 degrees, 10 degrees at most. Based on geo-mechanical model and sliding process analysis, with the application of the principle of energy conservation, we derived the theoretical sliding distance calculation formula of translational landslide. Three groups of physical simulation tests were established. Group test Ⅰ simulated the sliding distance under the water pressure generated under different conditions of widths and different water heads. Then the theoretical formula was tested by comparing the calculated results and group Ⅰ physical simulation test results. By comparison, the overall distribution shape of uplift pressure under the bottom of sliding body was close to rectangle with very few groundwater penetration points along the shear outlet. To verify the theoretical formula, group tests Ⅱ and Ⅲ were established thereafter. Each group of tests fixed the width and water head respectively. Meanwhile the shear outlet of physical model was set to two types totally blocked and totally seeping water. The results of three groups of physical simulation tests verified the reliability and applicability of theoretical formula. Applying the theoretical formula to Shizishan landslide to calculate the sliding distance, and the calculation results showed the good applicability of the method. The research has some guidance and practical value to prevention and mitigation of translational landslides.

Key words: translational landslide, sliding distance, calculation model, physical simulation, distribution shape of uplift pressure

中图分类号: 

  • TU 457

[1] 徐毅青, 邓绍玉, 葛琦. 锚索预应力初期与长期损失的预测模型研究[J]. 岩土力学, 2020, 41(5): 1663-1669.
[2] 许江, 宋肖徵, 彭守建, 张超林, 李奇贤, 张小蕾, . 顺层钻孔布置间距对煤层瓦斯抽采效果影响的 物理模拟试验研究[J]. 岩土力学, 2019, 40(12): 4581-4589.
[3] 郑光, 许强, 彭双麒. 岩质滑坡−碎屑流的运动距离计算公式研究[J]. 岩土力学, 2019, 40(12): 4897-4906.
[4] 王丽艳, 巩文雪, 曹晓婷, 姜朋明, 王炳辉. 砾钢渣抗液化特性试验研究[J]. 岩土力学, 2019, 40(10): 3741-3750.
[5] 赵建军,余建乐,解明礼,柴贺军,李 涛,步 凡,蔺 冰,. 降雨诱发填方路堤边坡变形机制物理模拟研究[J]. , 2018, 39(8): 2933-2940.
[6] 李 伟,许 强,吴礼舟,李斯琦, . 平推式滑坡中底滑面承压水渗流形式对其稳定性的影响[J]. , 2018, 39(4): 1401-1410.
[7] 许 江,苏小鹏,彭守建,刘义鑫,冯 丹,刘龙荣, . 卸压区不同钻孔长度抽采条件下瓦斯运移特性试验[J]. , 2018, 39(1): 103-111.
[8] 岳 哲,叶义成,王其虎,姚 囝,施耀斌. 基于量纲分析的岩石相似材料抗压强度计算模型[J]. , 2018, 39(1): 216-221.
[9] 胡明鉴,蒋航海,崔 翔,阮 洋,刘海峰,张晨阳,. 钙质砂电导率与相关性问题初探[J]. , 2017, 38(S2): 158-162.
[10] 蒋 毅,魏思宇,尚彦军,高 强,李严严,. 深部复合地层力学性质研究[J]. , 2017, 38(S2): 266-272.
[11] 易庆林,赵能浩,刘艺梁, . 基于能量守恒的滑坡稳定性计算模型[J]. , 2017, 38(S1): 1-10.
[12] 许 江,刘龙荣,彭守建,冯 丹,苏小鹏,张 兰, . 不同吸附性气体抽采过程中煤储层参数演化特征研究[J]. , 2017, 38(6): 1647-1656.
[13] 张庆贺,王汉鹏,李术才,薛俊华,张 冰,朱海洋,张德民,. 煤与瓦斯突出物理模拟试验中甲烷相似气体的探索[J]. , 2017, 38(2): 479-486.
[14] 黄小福,张迎宾,赵兴权,余鹏程,邢 昊,张 珏,陈岩岩,. 地震条件下危岩崩塌运动特性的初步探讨[J]. , 2017, 38(2): 583-592.
[15] 张超林,彭守建,许 江,耿加波,杨红伟,罗小航, . 煤与瓦斯突出过程中气压时空演化规律[J]. , 2017, 38(1): 81-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!