›› 2009, Vol. 30 ›› Issue (S2): 204-207.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effects of cyclic loading on mechanical properties of slity clay

JIANG Min-min1, CAI Zheng-yin1, CAO Pei1, FANG Wei2   

  1. 1.Nanjing Hydraulic Research Institute, Nanjing 210024, China; 2. Shanghai Dredging Co., Ltd., CCCC, Shanghai 200002, China
  • Received:2009-07-18 Online:2009-08-10 Published:2011-06-21

Abstract:

A series of consolidated undrained static triaxial tests and cyclic triaxial tests were carried out on undisturbed marine silty clay of Bohai Bay; the cyclic triaxial tests consist of cyclic load and post-cyclic undrained shear 2 stages. It was shown that with the increase of cyclic stress ratio, the average axial strain and single amplitude axial strain become large; when cyclic stress ratio large than 0.4, average axial strain and single amplitude axial strain increase fast with number of cycles; average axial strain increase with confining stress, while single amplitude axial strain decrease with confining stress. Under large cyclic stress ratio, normalized average pore pressure and normalized single amplitude pore pressure come to a stabilization with number of cycles; with large cyclic stress ratio normalized average pore pressure and normalized single amplitude pore pressure become large; with large confining stress normalized average pore pressure become small, while the effect of confining stress on normalized single amplitude pore pressure was unapparent. In post-cyclic undrained shear stage, the effective stress path in q-p’ plane and pore pressure exhibit the properties of over consolidation clay.

Key words: silty clay, dynamic triaxial test, dynamic properties, static properties after cyclic loading

CLC Number: 

  • TU 411.8
[1] LIANG Ke, CHEN Guo-xing, HE Yang, LIU Jing-ru, . An new method for calculation of dynamic modulus and damping ratio based on theory of correlation function [J]. Rock and Soil Mechanics, 2019, 40(4): 1368-1376.
[2] LIU Jia-shun, WANG Lai-gui, ZHANG Xiang-dong, LI Xue-bin, ZHANG Jian-jun, REN Kun, . Cyclic triaxial test on saturated silty clay under partial drainage condition with variable confining pressure [J]. Rock and Soil Mechanics, 2019, 40(4): 1413-1419.
[3] HU Tian-fei, LIU Jian-kun, WANG Tian-liang, YUE Zu-run, . Effect of freeze-thaw cycles on deformation characteristics of a silty clay and its constitutive model with double yield surfaces [J]. Rock and Soil Mechanics, 2019, 40(3): 987-997.
[4] WANG Li-yan, GONG Wen-xue, CAO Xiao-ting, JIANG Peng-ming, WANG Bing-hui. Anti-liquefaction characteristics of gravel steel slag [J]. Rock and Soil Mechanics, 2019, 40(10): 3741-3750.
[5] YANG Wen-bao, WU Qi, CHEN Guo-xing, . Dynamic shear modulus prediction method of undisturbed soil in the estuary of the Yangtze River [J]. Rock and Soil Mechanics, 2019, 40(10): 3889-3896.
[6] LI Xuan, SUN De-an, ZHANG Jun-ran,. Effect of suction history on dynamic deformation characteristics of unsaturated silt [J]. , 2018, 39(8): 2829-2836.
[7] LIU Song-yu, CAO Jing-jing, CAI Guang-hua, . Microstructural mechanism of reactive magnesia carbonated and stabilized silty clays [J]. , 2018, 39(5): 1543-1552.
[8] NIAN Ting-kai, JIAO Hou-bin, FAN Ning, GUO Xing-sen, JIA Yong-gang,. Experiment on dynamic strain-pore pressure of soft clay in the northern slope of South China Sea [J]. , 2018, 39(5): 1564-1572.
[9] ZHANG Xiu-zhao, WU Shang-wei, ZHANG Chao, YANG Chun-he,. Dynamic pore-water pressure evolution of tailings under different consolidation conditions [J]. , 2018, 39(3): 815-822.
[10] LI Lian-xiang, FU Qing-hong, HUANG Jia-jia, . Centrifuge model tests on cantilever foundation pit engineering in sand ground and silty clay ground [J]. , 2018, 39(2): 529-536.
[11] CHEN Shu-feng, KONG Ling-wei, LI Cheng-sheng, . Nonlinear characteristics of Poisson's ratio of silty clay under low amplitude strain [J]. , 2018, 39(2): 580-588.
[12] YANG Guang-chang, BAI Bing. Thermal consolidation of saturated silty clay considering overconsolidation effect with different heating-cooling paths [J]. , 2018, 39(1): 71-77.
[13] LI Shu-cai, CHEN Hong-bin, ZHANG Chong, GONG Ying-jie, LI Hui-liang, DING Wan-tao, WANG Qi,. Research on effect of advanced support in silty clay tunnel [J]. , 2017, 38(S2): 287-294.
[14] HUANG Juan, DING Zu-de , YUAN Tie-ying, ZHAO Dan, PENG Li-min,. Experimental study of dynamic deformation properties of peaty soil under cyclic loading [J]. , 2017, 38(9): 2551-2558.
[15] LIU Han-long, LIU Ping, YANG Gui, XIAO Yang, LIU Yan-chen,. Experimental investigations on dynamic residual deformation behaviors of PFA-reinforced rockfill materials [J]. , 2017, 38(7): 1863-1868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
[4] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[5] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[6] BAI Bing, LI Xiao-chun, SHI Lu, TANG Li-zhong. Slope identity of elastoplastic stress-strain curve and its verification and application[J]. , 2010, 31(12): 3789 -3792 .
[7] TANG Li-min. Regularization algorithm of foundation settlement prediction model[J]. , 2010, 31(12): 3945 -3948 .
[8] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[9] CAI Hui-teng, WEI Fu-quan, CAI Zong-wen. Study of silty clay dynamic characteristics in Chongqing downtown area[J]. , 2009, 30(S2): 224 -228 .
[10] SONG Ling , LIU Feng-yin , LI Ning . On mechanism of rotary cone penetration test[J]. , 2011, 32(S1): 787 -0792 .