›› 2011, Vol. 32 ›› Issue (4): 1008-1012.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental research on effective reinforced depth of rubble bed with heavy tamping compaction

YE Feng1,TONG Xin-chun2,ZHANG Gong-xin1,ZHANG Bao-jie2,LIU Yuan-li2   

  1. 1. Engineering Technology Research of CCCC Fourth Harbor Engineering Co., Ltd., Guangzhou 510230, China; 2. Fuzhou Co. of CCCC Fourth Harbor Engineering Co., Ltd., Fuzhou 350003, China
  • Received:2009-12-01 Online:2011-04-10 Published:2011-04-29

Abstract:

Heavy tamping compaction is a traditional method in tamping construction of rubble bed. Some constraints in this method, such as small tamping energy and small dividing thickness, result in the low efficiency. A couple of improvements in the process of heavy tamping compaction are put forward. The proposed improvements are the increase in the tamping energy and the dividing thickness of rubble bed. Heavy hammer is first designed; then field contrast test of tamping stress and laboratory model test are carried out. The test results show that the new process is feasible. On this basis, the dividing thickness of rubble bed is increased to 4 m from 2 m. The construction results of the Songyu Harbour in Xiamen show that the improved process of heavy tamping compaction gets a good result; as the average compacting rate reaches as high as 14.85% and the efficiency increases significantly, so as to provide reference for similar engineering practice.

Key words: heavy tamping compaction, rubble bed, effective reinforced depth, field test, model test

CLC Number: 

  • U 655
[1] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[2] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[3] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[4] CHEN Yu-long, UCHIMURA Taro, . Early warning of rainfall-induced landslides based on elastic wave velocity [J]. Rock and Soil Mechanics, 2019, 40(9): 3373-3386.
[5] WANG Qin-ke, MA Jian-lin, CHEN Wen-long, YANG Yan-xin, HU Zhong-bo, . Centrifugal model tests and calculation method of uplift bearing capacity of rock-socketed pedestal pile overburden soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3405-3415.
[6] LU Liang, SHI Tong-hui, YANG Dong, . Control effect of uneven settlement of subgrade by composited method of replacement load shedding and reinforced embankment [J]. Rock and Soil Mechanics, 2019, 40(9): 3474-3482.
[7] LU Chen-kai, KONG Gang-qiang, SUN Guang-chao, CHEN Bin, YIN Gao-xiang, . Field tests on thermal-mechanical coupling characteristics of energy pile in pile-raft foundation [J]. Rock and Soil Mechanics, 2019, 40(9): 3569-3575.
[8] CAI Yu, XU Lin-rong, ZHOU De-quan, DENG Chao, FENG Chen-xi, . Model test research on method of self-balance and traditional static load [J]. Rock and Soil Mechanics, 2019, 40(8): 3011-3018.
[9] SUN Fei, ZHANG Zhi-qiang, YI Zhi-wei. Model experimental study of the influence of normal fault with stick-slip dislocation on subway tunnel structure [J]. Rock and Soil Mechanics, 2019, 40(8): 3037-3044.
[10] ZHOU Dong, LIU Hang-long, ZHANG Wen-gang, DING Xuan-ming, YANG Chang-you, . Transparent soil model test on the displacement field of soil around single passive pile [J]. Rock and Soil Mechanics, 2019, 40(7): 2686-2694.
[11] WU Shuang-shuang, HU Xin-li, GONG Hui, ZHOU Chang, XUChu, WANG Qiang, YING Chun-ye, . Shear properties of pile-soil of three modes of bored piles in field tests [J]. Rock and Soil Mechanics, 2019, 40(7): 2838-2846.
[12] ZHAO Xiao-yan, FAN Yu-fei, LIU Liang, JIANG Chu-sheng, . Model test on potential failure surface characteristics of railway stepped reinforced soil retaining wall [J]. Rock and Soil Mechanics, 2019, 40(6): 2108-2118.
[13] CHU Zhao-fei, LIU Bao-guo, REN Da-rui, SONG Yu, MA Qiang, . Development of rheology similar material of soft rock and its application in model test [J]. Rock and Soil Mechanics, 2019, 40(6): 2172-2182.
[14] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
[15] LI Shu-zhao, WANG Zhong-chang, JIA Xu, HE Lin-lin, . Simplified calculation method for cyclic bearing capacity of suction anchors with taut mooring in soft clay [J]. Rock and Soil Mechanics, 2019, 40(5): 1704-1712.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YIN Jie,GAO Yu-feng,HONG Zhen-shun. Research on undrained shear strength tests of soft Lianyungang clay[J]. , 2009, 30(11): 3297 -3301 .
[2] CHEN Shao-jie, GUO Wei-jia, YANG Yong-jie. Experimental study of creep model and failure characteristics of coal[J]. , 2009, 30(9): 2595 -2598 .
[3] LIN Gang,XU Chang-jie,CAI Yuan-qiang. Research on characters of retaining structures for deep foundation pit excavation under unbalanced heaped load[J]. , 2010, 31(8): 2592 -2598 .
[4] ZHAO Lian-heng,LUO Qiang,LI Liang,YANG Feng,DAN Han-cheng. Upper bound quasi-static analysis of dynamic stability of layered rock slopes[J]. , 2010, 31(11): 3627 -3634 .
[5] LIU Xiao-li, ZHANG Dan-dan, LIU Kai, SU Yuan-yuan. Design and application of a kind of direct shear model test apparatus[J]. , 2010, 31(S2): 475 -480 .
[6] KANG Yong-jun,YANG Jun,SONG Er-xiang. Calculation method and parameter research for time-history of factor of safety of slopes subjected to seismic load[J]. , 2011, 32(1): 261 -268 .
[7] LU Kun-lin, YANG Yang. Approximate calculation method of active earth pressure considering displacement[J]. , 2009, 30(2): 553 -557 .
[8] LI Rong-jian,YU Yu-zhen,Lü He,LI Guang-xin. Dynamic centrifuge modeling of piles-reinforced slope on saturated sandy foundation[J]. , 2009, 30(4): 897 -902 .
[9] XIAO Cheng-zhi, SUN Jian-cheng, LI Yu-run, LIU Xiao-peng. Mechanism analysis of ecological slope protection against runoff erosion by grass jetting on 3D geomat[J]. , 2011, 32(2): 453 -458 .
[10] ZHOU Wan-huan , YIN Jian-hua. Finite element modeling soil nail pullout behavior and effects of overburden pressure and dilation[J]. , 2011, 32(S1): 691 -0696 .