›› 2011, Vol. 32 ›› Issue (S1): 171-175.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study of tunnel surrounding rock classification based on rough set and ideal point method

ZHANG Le-wen, QIU Dao-hong, LI Shu-cai, ZHANG De-yong   

  1. Geotechnical and Structural Engineering Research Center, Shandong University, Ji’nan 250061, China
  • Received:2010-06-06 Online:2011-05-15 Published:2011-05-16

Abstract: Ideal point method is a method commonly used in multiobjective decision analysis. That basic idea is to target the problem by constructing a multiobjective ideal solution and negative ideal solution, and take close to the ideal solution or away from the negative ideal solution as basis to evaluate the objects. Based on the ideal point method, a model of tunnel surrounding rock classification is established. It has great influence on the final evaluation results for the reasonable weight values of the evaluation indices. The rough set theory is adopted to determine the weights, and the problem of weights is converted into the attributes significance estimating in rough set. The method is fully derived by engineering samples, and no experience is necessary, with a strong operational. Finally, the model of tunnel surrounding rock classification is established based on rough set and ideal point method, and is applied to the practical engineering. The results show that this method is reliable and provides a new idea to surrounding rock classification

CLC Number: 

  • TU 443
[1] CHENG Xing-lei, WANG Jian-hua, WANG Zhe-xue,. Model experiment on cyclic instability process of suction anchors in soft clays [J]. , 2018, 39(9): 3285-3293.
[2] LI Xuan, SUN De-an, ZHANG Jun-ran,. Effect of suction history on dynamic deformation characteristics of unsaturated silt [J]. , 2018, 39(8): 2829-2836.
[3] ZENG Zhi-xiong, KONG Ling-wei, LI Jing-jing, LI Ju-zhao, . Mechanical properties and normalized stress-strain behaviour of Yanji swelling rock under wetting-drying-freezing-thawing cycles [J]. , 2018, 39(8): 2895-2904.
[4] LI Jian-min, TENG Yan-jing. Regularity and calculation method of rebound deformation and recompression deformation of soil based on bearing test [J]. , 2018, 39(S1): 113-121.
[5] DONG Jin-yu, WANG Chuang, ZHOU Jian-jun, YANG Ji-hong, LI Yan-wei,. Experimental study of foam-improved sandy gravel soil [J]. , 2018, 39(S1): 140-148.
[6] SUN Yi-fei, SHEN Yang, LIU Han-long,. Fractional strain rate and its relation with fractal dimension of granular soils [J]. , 2018, 39(S1): 297-302.
[7] HU Dong-xu, LI Xian , ZHOU Chao-yun, XUE Le, LIU Hong-fu, WANG Shi-ji. Quantitative analysis of swelling and shrinkage cracks in expansive soil [J]. , 2018, 39(S1): 318-324.
[8] YAN Shu-wang, LI Jia, YAN Yue, CHEN Hao,. Research on stable limit depth of vertical cylinder hole in cohesive soil ground [J]. , 2018, 39(4): 1176-1181.
[9] SUN De-an, ZHANG Qian-yue, ZHANG Long, ZHU Zan-cheng,. Experimental study on ageing effect on shear strength of Gaomiaozi bentonite [J]. , 2018, 39(4): 1191-1196.
[10] YANG Ming-hui, FENG Chao-bo, ZHAO Ming-hua, LUO Hong. A method for calculating laterally loaded pile using strain wedge model considering slope effect [J]. , 2018, 39(4): 1271-1280.
[11] MAO Xin, WANG Shi-ji, CHENG Ming-shu, CHEN Zheng-han, WANG Xiao-qi,. Mechanical behavior of expansive soil under initial damage and wetting-drying cycles [J]. , 2018, 39(2): 571-579.
[12] MIAO Fa-sheng, WU Yi-ping, XIE Yuan-hua, LI Yao-nan, LI Lin-wei. Centrifugal test on retrogressive landslide influenced by rising and falling reservoir water level [J]. , 2018, 39(2): 605-613.
[13] CHEN Zu-yu, LI Kang-ping, LI Xu, ZHAN Cheng-ming,. A preliminary study of allowable factor of safety in gravity retaining wall stability analysis [J]. , 2018, 39(1): 1-10.
[14] CHEN Xiang-sheng, LI Yin-ping, YIN Hong-wu, GE Xin-bo, SHI Xi-lin, YANG Chun-he, . Gas leakage assessment method of underground gas storage in multi-interlayer salt mine [J]. , 2018, 39(1): 11-20.
[15] ZHU Yong, FENG Xia-ting, ZHOU Hui, ZHANG Chuan-qing, ZHANG Ming-qiang,. Calibration of partial factors of shear strength parameters using standard deviation feedback method [J]. , 2018, 39(1): 151-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LIU Yu-cheng,CAO Shu-gang,LIU Yan-bao. Discussion on some time functions for describing dynamic course of surface subsidence due to mining[J]. , 2010, 31(3): 925 -931 .
[3] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[4] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[5] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[6] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[7] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[8] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .
[9] GONG Wei-ming, HUANG Ting, DAI Guo-liang. Experimental study of key parameters of high piled foundation for offshore wind turbine[J]. , 2011, 32(S2): 115 -121 .
[10] WANG Cheng-bing. Laboratory and numerical investigation on failure process of tunnel constructed in homogeneous rock[J]. , 2012, 33(1): 103 -108 .