›› 2011, Vol. 32 ›› Issue (S1): 397-0402.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of expansion model of expansive soil considering state water content and density

HUANG Bin1, 2, RAO Xi-bao1, 2, WANG Zhang-qiong3, TAN Fan1, 2   

  1. 1. Geotechnical Division, Yangtze River Scientific Research Institute, Wuhan 430010, China; 2. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Wuhan 430010, China; 3. Graduate School, China University of Geosciences, Wuhan 430074, China
  • Received:2010-12-27 Online:2011-05-15 Published:2011-05-16

Abstract: The relationships between compactness, initial water content, cover load and expansion rate have been studied through expansion experiments at the state of K0 stress for Handan strong expansive soil. Then a constitutive model of expansive soil which considered the effects of these three factors is set up. The relationship between ultimate water content, compactness, initial water content and cover load is also set up. Finally, a constitutive equation for linear expansion coefficient of Handan strong expansive soil is proposed. It takes compactness, initial water content, cover load and ultimate water content as variables. With this constitutive equation, constitutive relation of any water content can be obtained. The experiments and expression of this model are relatively simple and of certain practical use. This model can provide theoretical basis and reference for design and construction.

Key words: expansive soil, expansion model, state water content, loaded expansion ratio

CLC Number: 

  • TU 431
[1] XIE Hui-hui, XU Zhen-hao, LIU Qing-bing, HU Gui-yang, . Evolution of peak strength and residual strength of weak expansive soil under drying-wetting cycle paths [J]. Rock and Soil Mechanics, 2019, 40(S1): 245-252.
[2] LIU Zu-qiang, LUO Hong-ming, ZHENG Min, SHI Yun-jiang, . Study on expansion-shrinkage characteristics and deformation model for expansive soils in canal slope of South-to-North Water Diversion Project [J]. Rock and Soil Mechanics, 2019, 40(S1): 409-414.
[3] LI Jing-jing, KONG Ling-wei, . Creep properties of expansive soil under unloading stress and its nonlinear constitutive model [J]. Rock and Soil Mechanics, 2019, 40(9): 3465-3475.
[4] CHEN Yong-qing, WEN Chang-ping, FANG Xuan-qiang, . Modified Yin’s double-yield-surface model for bioenzyme-treated expansive soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3515-3523.
[5] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Experimental study of ageing effect on mechanical properties of Nanyang undisturbed expansive soil [J]. Rock and Soil Mechanics, 2019, 40(8): 2947-2955.
[6] CAI Zheng-yin, ZHU Xun, HUANG Ying-hao, ZHANG Chen. Influences of freeze-thaw process on evolution characteristics of fissures in expensive soils [J]. Rock and Soil Mechanics, 2019, 40(12): 4555-4563.
[7] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Experimental study on shear mechanical properties of unloading damaged undisturbed expansive soil [J]. Rock and Soil Mechanics, 2019, 40(12): 4685-4692.
[8] ZHENG Jun-jie, LÜ Si-qi, CAO Wen-zhao, JING Dan, . Numerical simulation of composite rigid-flexible pile-supported retaining wall under the action of high-filled expansive soil [J]. Rock and Soil Mechanics, 2019, 40(1): 395-402.
[9] LI Guo-wei, SHI Sai-jie, HOU Yu-zhou, WU Jian-tao, LI Feng, WU Shao-p, . Experimental study of development technology of non-expansive soil in Yangtze River to Huaihe River water diversion experimental project [J]. Rock and Soil Mechanics, 2018, 39(S2): 302-314.
[10] ZHUANG Xin-shan, WANG Jun-xiang, WANG Kang, LI Kai, HU Zhi. Experimental study on dynamic characteristics of expansive soil modified by weathered sand [J]. Rock and Soil Mechanics, 2018, 39(S2): 149-156.
[11] HU Dong-xu, LI Xian , ZHOU Chao-yun, XUE Le, LIU Hong-fu, WANG Shi-ji. Quantitative analysis of swelling and shrinkage cracks in expansive soil [J]. , 2018, 39(S1): 318-324.
[12] YANG He-ping, TANG Xian-yuan, WANG Xing-zheng, XIAO Jie, NI Xiao,. Shear strength of expansive soils under wet-dry cycles with loading [J]. , 2018, 39(7): 2311-2317.
[13] ZHANG Chun-xiao, XIAO Hong-bin, BAO Jia-miao, YIN Ya-hu, YIN Duo-lin. Stress relaxation model of expansive soils based on fractional calculus [J]. , 2018, 39(5): 1747-1752.
[14] MAO Xin, WANG Shi-ji, CHENG Ming-shu, CHEN Zheng-han, WANG Xiao-qi,. Mechanical behavior of expansive soil under initial damage and wetting-drying cycles [J]. , 2018, 39(2): 571-579.
[15] YAO Chuan-qin, WEI Chang-fu, MA Tian-tian, CHEN He-long, CHEN Huo-dong,. Effects of pore solution on mechanical properties of expansive soil [J]. , 2017, 38(S2): 116-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAN Han-hua, FU He-lin. Testing study of application of time domain reflectometry to highway slope monitoring[J]. , 2010, 31(4): 1331 -1336 .
[2] YE Jun-neng. Dynamic response of track system-layered transversely isotropic saturated subgrade to train loads[J]. , 2010, 31(5): 1597 -1603 .
[3] WEI Xing,WANG Gang,YU Zhi-ling. FEM of traffic-load-induced settlement of road on soft clay[J]. , 2010, 31(6): 2011 -2015 .
[4] WEN Shi-yi, LI Jing , SU Xia , YAO Xiong. Studies of mesomechanical structure characters of surrounding rock failure under complex stress state[J]. , 2010, 31(8): 2399 -2406 .
[5] ZHANG Zhi-qiang, HE Ben-guo, HE Chuan. Study of load of lining under condition of saturated stratum for underwater tunnels[J]. , 2010, 31(8): 2465 -2470 .
[6] MAO Ning,ZHANG Yao-liang. Typical examples of simple methods to find empirical formulas[J]. , 2010, 31(9): 2978 -2982 .
[7] YU Tian-tang. Extended finite element method for modeling three-dimensional crack problems[J]. , 2010, 31(10): 3280 -3285 .
[8] LIU Jie,LI Jian-lin,QU Jian-jun,Cheng Xing,LI Jian-wu,LUO Shi-wei. Multiple factors analysis of influence of developing horizontal displacement at Dagangshan dam abutment slope based on unloading rock mass mechanics[J]. , 2010, 31(11): 3619 -3626 .
[9] LI Wei-hua, ZHAO Cheng-gang, DU Nan-xin. Analysis of effects of saturated soft interlayer on seismic responses of metro station[J]. , 2010, 31(12): 3958 -3963 .
[10] HAN Xian-min. Study of construction technology and mechanical effect of Guanjiao tunnel in shallow-buried sandy stratum in Xining-Golmud 2nd line[J]. , 2010, 31(S2): 297 -302 .