›› 2011, Vol. 32 ›› Issue (S1): 680-0685.

• Numerical Analysis • Previous Articles     Next Articles

ALE method finite element analysis of elastoplastic soil slope

LIU Kai-fu1, 2, XIE Xin-yu2, WU Chang-fu1, WU Da-zhi1, ZHANG Ji-fa3   

  1. 1. College of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China; 3. Center for Engineering and Scientific Computation, Zhejiang University, Hangzhou 310027, China
  • Received:2011-02-15 Online:2011-05-15 Published:2011-05-16

Abstract: Finite element methods are largely used in solving nonlinear geometrical and material problems. But standard finite element methods are ineffectively in handling extreme material deformation, such as cases of large deformation and severe mesh distortion problems in computation. Arbitrary Lagrangian-Eulerian (ALE) methods incorporate the advantages of Lagrangian and Eulerian methods and overcome their disadvantages. The methods can solve many problems which can be solved difficultly by Lagrangian and Eulerian methods. Based on ALE finite element methods and fundamental theory of elastoplastic large deformation, the soil slope stability problems of a simple soil slope and a complex soil slope with weak layer under self-gravity in geotechnical engineering are analyzed as the illustrative cases. The computational results show that the deformation behaviors of slope sliding and the critical slip plane can be defined clearly from the deformed shape obtained by ALE finite element method. The results show that the arbitrary Lagrangian-Eulerian (ALE) methods can effectively analyze the stability of soil slopes and be applied to the elastoplasticity analysis of geotechnical engineering.

Key words: ALE method, finite elements, elastoplasticity, soil slope

CLC Number: 

  • TU 432,O 344
[1] CHEN Jian-gong, LI Hui, HE Zi-yong, . Homogeneous soil slope stability analysis based on variational method [J]. Rock and Soil Mechanics, 2019, 40(8): 2931-2937.
[2] WANG Jun-min, XIONG Yong-lin, YANG Qi-lai, SANG Qin-yang, HUANG Qiang. Study of the dynamic elastoplastic constitutive model for unsaturated soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2323-2331.
[3] LIU Qing-bin, PAN Mao, LIU Jie, GUO Yan-jun, ZHANG Xiao-shuang, YAO Jian-peng, LI Fang-yu, . Paraview visualization and virtual reality of output of finite element analysis in Abaqus [J]. Rock and Soil Mechanics, 2019, 40(12): 4916-4924.
[4] WU Hong-gang, WU Zhi-xin, XIE Xian-long, PAI Li-fang, . Large-scale shaking table test on micro-pile composite structure on soil slope [J]. Rock and Soil Mechanics, 2019, 40(10): 3844-3854.
[5] WU Zhi-xin, WU Hong-gang, LAI Tian-wen, LI Yu-rui, PAI Li-fang, . Dynamic soil pressure response and its spectrum characteristics of soil slope reinforced by micro-pile [J]. Rock and Soil Mechanics, 2019, 40(10): 3909-3919.
[6] ZHANG Wen-sheng, LUO Qiang, JIANG Liang-wei, LI Ang, . Reliability analysis of soil slope considering moment estimation bias using small sample geotechnical parameters [J]. Rock and Soil Mechanics, 2019, 40(1): 315-324.
[7] WANG Zhong-jin, FANG Peng-fei, XIE Xin-yu, WANG Kui-hua, WANG Wen-jun, LI Jin-zhu, . Analysis of effected factors for vertical compressive bearing capacity of ribbed bamboo joint pile [J]. Rock and Soil Mechanics, 2018, 39(S2): 381-388.
[8] ZHENG An-xing, LUO Xian-qi,. An extended finite element method for modeling hydraulic fracturing in perilous rock [J]. , 2018, 39(9): 3461-3468.
[9] ZHANG Chen-yang, ZHANG Ming, ZHANG Tai-li, SUN Qiang, YANG Long,. Impact of dyke and its residual soil on seepage and stability of Zhonglin landslide [J]. , 2018, 39(7): 2617-2625.
[10] YANG He-ping, TANG Xian-yuan, WANG Xing-zheng, XIAO Jie, NI Xiao,. Shear strength of expansive soils under wet-dry cycles with loading [J]. , 2018, 39(7): 2311-2317.
[11] ZHANG Xiao-yan, ZHANG Li-xiang, LI Ze,. Reliability analysis of soil slope based on upper bound method of limit analysis [J]. , 2018, 39(5): 1840-1849.
[12] LI Ze, LIU Yi, ZHOU Yu, WANG Jun-xing,. Lower bound analysis of ultimate bearing capacity of stone masonry retaining wall slope using mixed numerical discretisation [J]. , 2018, 39(3): 1100-1108.
[13] XIONG Hao, QIU Zhan-hong, WANG Xiao-gang . Directional interpolation infinite elements for elastic medium [J]. Rock and Soil Mechanics, 2018, 39(12): 4659-4664.
[14] LIAN Ji-feng, LUO Qiang, XIE Tao. Shallow stability and structural design of soil slopes protected by rectangular frames under seepage parallel to slope surface [J]. , 2017, 38(S1): 61-69.
[15] WU Meng-xi, YU Ting, ZHANG Qi,. Finite element simulation of influence of deep overburden suffusion on dam stress and deformation [J]. , 2017, 38(7): 2087-2095.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
[4] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[5] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[6] BAI Bing, LI Xiao-chun, SHI Lu, TANG Li-zhong. Slope identity of elastoplastic stress-strain curve and its verification and application[J]. , 2010, 31(12): 3789 -3792 .
[7] TANG Li-min. Regularization algorithm of foundation settlement prediction model[J]. , 2010, 31(12): 3945 -3948 .
[8] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[9] CAI Hui-teng, WEI Fu-quan, CAI Zong-wen. Study of silty clay dynamic characteristics in Chongqing downtown area[J]. , 2009, 30(S2): 224 -228 .
[10] SONG Ling , LIU Feng-yin , LI Ning . On mechanism of rotary cone penetration test[J]. , 2011, 32(S1): 787 -0792 .