›› 2011, Vol. 32 ›› Issue (5): 1394-1398.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of surface crack growth in layered salt rock under uniaxial compression

LI Lin1, CHEN Jie1, JIANG De-yi1, YANG Chun-he2, LIU Chun3   

  1. 1. Key Laboratory for the Exploitation of Southwestern Resources & the Environmental Disaster Control Engineering of Ministry of Education, Chongqing University, Chongqing 400044, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 3. College of Safety Engineering, Chongqing University of Science and Technology, Chongqing 400042, China
  • Received:2010-01-29 Online:2011-05-10 Published:2011-09-23

Abstract: The surface crack growth and dispersion in layered salt rock under uniaxial compression are studied by fluorescence and mesomechanical techniques; the differences of physico-mechanical properties of salt rock at home and abroad are briefly analyzed. The experimental results show: for pure salt rock, the surface cracks are mainly sliding cracks between salt grains. Destructive macro cracks are shapes with expand and joint coalescence of cracks between salt grains which impacted by size and uniformity of distribution of salt grains, strength and deformation of salt rock grains abroad are greater than domestic salt rock. For pure intercalation salt rock, the surface crack grown at the mixture of several mineral deposits, and which distribution effected by interlayer mineral composition and structure. For laminated salt rock, the surface crack distribution is effected by form of interfacial transition between interlayer interface and salt rocks. Generally, the serrated cracks mainly form by the main crack expansion to interlayer; the cracks with transition clearly and containing a thin layer of mud form by main crack and mud layers loose cracks assemble and expanding

Key words: layered salt rock, uniaxial compression, fluorescence, mesomechanics, surface crack

CLC Number: 

  • TU 45
[1] LIU Xi-ling, LIU Zhou, LI Xi-bing, HAN Meng-si. Acoustic emission b-values of limestone under uniaxial compression and Brazilian splitting loads [J]. Rock and Soil Mechanics, 2019, 40(S1): 267-274.
[2] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[3] KE Zhi-qiang, WANG Huan-ling, XU Wei-ya, LIN Zhi-nan, JI Hua, . Experimental study of mechanical behaviour of artificial columnar jointed rock mass containing transverse joints [J]. Rock and Soil Mechanics, 2019, 40(2): 660-667.
[4] JIANG De-yi, ZHANG Shui-lin, CHEN Jie, YANG Tao, WANG Xiao-shu, XIE Kai-nan, JIANG Xiang, . Low filed NMR and acoustic emission probability density study of freezing and thawing cycles damage for sandstone [J]. Rock and Soil Mechanics, 2019, 40(2): 436-444.
[5] JIANG De-yi, LI Xiao-kang, CHEN Jie, LI Xiao-jun, LIU Wei, KANG Yan-fei, . Model test and numerical calculation of double-well flow field in layered salt rock [J]. Rock and Soil Mechanics, 2019, 40(1): 165-172.
[6] WU Tian-hua, ZHOU Yu, WANG Li, SUN Jin-hai, ZHAO Huan, SUN Zheng, . Mesoscopic study of interaction mechanism between circular hole and fissures in rock under uniaxial compression [J]. Rock and Soil Mechanics, 2018, 39(S2): 463-472.
[7] LIU Jian, ZHAO Guo-yan, LIANG Wei-zhang, WU Hao, PENG FU-hua,. Numerical simulation of uniaxial compressive strength and failure characteristics in nonuniform rock materials [J]. , 2018, 39(S1): 505-512.
[8] ZHANG Ping, YANG Chun-he, WANG Hu, GUO Yin-tong, XU Feng, HOU Zhen-kun,. Stress-strain characteristics and anisotropy energy of shale under uniaxial compression [J]. , 2018, 39(6): 2106-2114.
[9] LI Zhi-gang, XU Guang-li, HUANG Peng, ZHAO Xin, FU Yong-peng, SU Chang,. Mechanical and anisotropic properties of silty slates [J]. , 2018, 39(5): 1737-1746.
[10] LI Lu-lu, GAO Yong-tao, ZHOU Yu, JIN Ai-bing. Meso-scale modelling mechanical properties of rock-like material containing trident cracks under uniaxial compression [J]. , 2018, 39(10): 3668-3676.
[11] LIU Xiao-yun, YE Yi-cheng, WANG Qi-hu, ZHANG Hua, LIU Yan-zhang, LIU Yang,. Mechanical properties of similar material specimens of composite rock masses with different strengths under uniaxial compression [J]. , 2017, 38(S2): 183-190.
[12] JIANG De-yi, XIE Kai-nan, WANG Jing-yi, CHEN Jie, GUO Wei, MING Jing, . Statistical distribution law of acoustic emission energy and waiting-time of sandstone in critical state [J]. , 2017, 38(S2): 223-228.
[13] FAN Cheng-kai, SUN Yan-kun, LI Qi, LU Hai-feng, NIU Zhi-yong, LI Xia-ying, . Testing Technology of fiber Bragg grating in the shale damage experiments under uniaxial compression conditions [J]. , 2017, 38(8): 2456-2464.
[14] LIU Di, ZHOU Hong-wei, ZHAO Yang, DUAN Xin, DING Jing-yang. Study of creep constitutive model of rock salt based on acoustic emission characteristics [J]. , 2017, 38(7): 1951-1958.
[15] JIA Jun, XIAO Ben-lin, KE Chang-ren. Simulation of three-dimensional homogeneous rock constitutive relation based on virtual internal bond model [J]. , 2017, 38(3): 740-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
[4] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[5] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[6] BAI Bing, LI Xiao-chun, SHI Lu, TANG Li-zhong. Slope identity of elastoplastic stress-strain curve and its verification and application[J]. , 2010, 31(12): 3789 -3792 .
[7] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[8] CAI Hui-teng, WEI Fu-quan, CAI Zong-wen. Study of silty clay dynamic characteristics in Chongqing downtown area[J]. , 2009, 30(S2): 224 -228 .
[9] JIN Jie-fang , LI Xi-bing , YIN Zhi-qiang , ZOU Yang. A method for defining rock damage variable by wave impedance under cyclic impact loadings[J]. , 2011, 32(5): 1385 -1393 .
[10] ZHOU Yan-jun , GENG Ying-chun , WANG Gui-bin , TANG Hong-lin , LI Zu-kui. Testing and analyzing rock mechanical characteristics for deep formation[J]. , 2011, 32(6): 1625 -1630 .