›› 2011, Vol. 32 ›› Issue (6): 1915-1920.

• Numerical Analysis • Previous Articles    

Coupling calculation method for asphalt overlays on rubblized portland cement concrete slab

ZHANG Quan1, LU Yang1, ZHANG Rong2   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China; 2. Institute of Highway Planning , Reconnaissance and Design Sichuan Provincial Department of Communications, Chengdu 610041, China
  • Received:2010-02-03 Online:2011-06-10 Published:2011-06-21

Abstract: For the structure of asphalt overlays on rubblized portland cement concrete (PCC) slab, properties of materials in each layer vary greatly. It is therefore not proper to be simulated by one mechanical model. For this reason, a numerical method which combines the finite difference and discrete element method (DEM) is proposed; in which the rubblized PCC slab is described using DEM while the asphalt overlays is simulated by the finite difference method. For purpose of smooth transition between continuous and discontinuous domains, conditions of compatibility and equilibrium along the corresponding boundaries need to be satisfied in the computation process. To illustrate the effects of rubblization more clearly, the rubblized PCC slab is further divided into three sublayers as the small particles layer, the surface layer and bottom layer. The mechanical response of the interaction between the rubblized PCC slab and overlays is discussed through varied the particles sizes. The results have shown that the tensile stress and strain at the bottom of the asphalt overlays are proportional to the particle size of the small particles layer. It is also found that the smaller the particles size of the surface layer is, the larger the tensile stress, strain are. In other words, strength loss of the old PCC is proportional to degree rubblization of the slab. This shows that the degree of rubblization should be properly controlled.

Key words: road engineering, asphalt overlays on rubblized portland cement concrete slab, finite difference, discrete element method, coupling

CLC Number: 

  • U 416
[1] HE Zhi-jun, LEI Hao-cheng, XIA Zhang-qi, ZHAO Lian-heng. Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 655-666.
[2] HOU Gong-yu, XIE Bing-bing, HAN Yu-chen, HU Tao, LI Zi-xiang, YANG Xing-kun, ZHOU Tian-ci, XIAO Hai-lin, . Experimental study and engineering application of coupling performance between distributed embedded optical fiber and tunnel lining [J]. Rock and Soil Mechanics, 2020, 41(2): 714-726.
[3] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[4] XIA Cai-chu, YU Qiang-feng, QIAN Xin, GUI Yang, ZHUANG Xiao-qing. Experimental study of shear-seepage behaviour of rock joints under constant normal stiffness [J]. Rock and Soil Mechanics, 2020, 41(1): 57-66.
[5] KUANG Du-min, LONG Zhi-lin, ZHOU Yi-chun, YAN Chao-ping, CHEN Jia-min, . Prediction of rate-dependent behaviors of cemented geo-materials based on BP neural network [J]. Rock and Soil Mechanics, 2019, 40(S1): 390-399.
[6] CHEN Dong, WANG En-yuan, LI Nan, . Study on wave field characteristics of different media models of coal and rock [J]. Rock and Soil Mechanics, 2019, 40(S1): 449-458.
[7] XU Jiang, WU Jun-yu, LIU Yi-xin, LIE Jiao, . Experimental study of shear-seepage coupling properties of rock mass under different filling degrees [J]. Rock and Soil Mechanics, 2019, 40(9): 3416-3424.
[8] LU Chen-kai, KONG Gang-qiang, SUN Guang-chao, CHEN Bin, YIN Gao-xiang, . Field tests on thermal-mechanical coupling characteristics of energy pile in pile-raft foundation [J]. Rock and Soil Mechanics, 2019, 40(9): 3569-3575.
[9] HOU Hui-ming, HU Da-wei, ZHOU Hui, LU Jing-jing, LÜ Tao, ZHANG Fan, . Thermo-hydro-mechanical coupling simulation method of surrounding rock in high-level radioactive waste repository considering effective meso-thermal parameters [J]. Rock and Soil Mechanics, 2019, 40(9): 3625-3634.
[10] CHEN Yong, SU Jian, TAN Yun-zhi, CHAN Dave, . Water retention capacities of soils under the coupling actions of cyclic drying-wetting and repeated loading-unloading [J]. Rock and Soil Mechanics, 2019, 40(8): 2907-2913.
[11] HAN Tong-chun, LIN Bo-wen, HE Lu, SU Yu-qin, . Three-dimensional slope modelling method and its stability based on coupled GIS and numerical simulation software [J]. Rock and Soil Mechanics, 2019, 40(7): 2855-2865.
[12] ZHOU Feng-xi, GAO Guo-yao, . Steady-state analysis of the heat-moisture-salt coupling for unsaturated soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2050-2058.
[13] GONG Wen-hui, ZHAO Xu-dong, QIU Jin-wei, LI Yi, YANG Han. Nonlinear analysis of one-dimensional consolidation of saturated clay including dead-weight effects and large strain [J]. Rock and Soil Mechanics, 2019, 40(6): 2099-2107.
[14] CHENG Guan-chu, LING Dao-sheng, SUN Zu-feng, . Analysis of flow in clay using electrokinetics considering coupling driving forces [J]. Rock and Soil Mechanics, 2019, 40(6): 2247-2256.
[15] WANG Yun-jia, SONG Er-xiang. Discrete element analysis of the particle shape effect on packing density and strength of rockfills [J]. Rock and Soil Mechanics, 2019, 40(6): 2416-2426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] QI Le,SHI Jian-yong,CAO Quan. Method for calculating rational thickness of cushion in rigid pile composite ground[J]. , 2009, 30(11): 3423 -3428 .
[2] YU Jun, TONG Li-yuan, LIU Song-yu, TANG Jin-song. Simulation and analysis of controlling water in tunnel based on preferred plane theory[J]. , 2009, 30(12): 3825 -3830 .
[3] YANG Hui, CAO Ping, JIANG Xue-liang. Micromechanical model for equivalent crack propagation under chemical corrosion of water-rock interaction[J]. , 2010, 31(7): 2104 -2110 .
[4] LIU Qi,LU Yao-ru,ZHANG Feng-e,XIONG Kang-ning. Study of simulation experiment for carbonate rocks dissolution under hydrodynamic pressure[J]. , 2010, 31(S1): 96 -101 .
[5] ZHANG Peng, CHEN Jian-ping, QIU Dao-hong. Evaluation of tunnel surrounding rock quality with extenics based on rough set[J]. , 2009, 30(1): 246 -250 .
[6] LI Xiang,JIA Ming-tao,WANG Li-guan,BAI Yun-fei. Study of orefragment size prediction in block caving based on Monte Carlo stochastic simulation[J]. , 2009, 30(4): 1186 -1190 .
[7] YIN Sheng-bin, DING Hong-yan. Time series-projection pursuit regression model for predicting surface settlement during pit excavation[J]. , 2011, 32(2): 369 -374 .
[8] HUO min, CHEN Jian-bing, ZHANG jin-zhao. Foundation clearing test study of highway subgrade in patchy permafrost regions of Northeast China[J]. , 2009, 30(S2): 263 -268 .
[9] XU Wen-Jie. Study of spatial effect and stability of large scale soil-rock mixture landslide[J]. , 2009, 30(S2): 328 -333 .
[10] CAO Jia-wen ,PENG Zhen-bin ,PENG Wen-xiang ,HE Zhong-ming ,YIN Quan. Model test study of inflated anchors in sands[J]. , 2011, 32(7): 1957 -1962 .