›› 2009, Vol. 30 ›› Issue (S2): 514-517.

• Numerical Analysis • Previous Articles     Next Articles

Discrete element simulation of biaxial compression test considering rolling resistance

JIANG Ming-jing1, 2, LI Xiu-mei1, 2, SUN Yu-gang1, 2, HU Hai-jun1, 2   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
  • Received:2009-08-17 Online:2009-08-10 Published:2011-06-21

Abstract: A novel contact model incorporating rolling resistance proposed by Jiang et al.(2005)is implemented into PFC2D. The behavior of sand with rolling resistance is simulated by PFC2D with the novel contact model. Based on the biaxial compression test, the effect of rolling resistance on the behavior of sand is studied. And some microscopic parameters including the average coordination number and force chains are studied too. The results show that the rolling resistant is very important in controlling the peak strength and leading to extensive dilatancy of sand. With rolling resistance the loose sand can also have a strain-softening and shear-dilantant behavior. With the increasing of the rolling resistance, the average coordination number reduces

Key words: sand soil, discrete element method, rolling resistance, biaxial compression test

CLC Number: 

  • TU 411
[1] KUANG Du-min, LONG Zhi-lin, ZHOU Yi-chun, YAN Chao-ping, CHEN Jia-min, . Prediction of rate-dependent behaviors of cemented geo-materials based on BP neural network [J]. Rock and Soil Mechanics, 2019, 40(S1): 390-399.
[2] WANG Yun-jia, SONG Er-xiang. Discrete element analysis of the particle shape effect on packing density and strength of rockfills [J]. Rock and Soil Mechanics, 2019, 40(6): 2416-2426.
[3] FU Long-long, ZHOU Shun-hua, TIAN Zhi-yao, TIAN Zhe-kan, . Force chain evolution in granular materials during biaxial compression [J]. Rock and Soil Mechanics, 2019, 40(6): 2427-2434.
[4] ZHAO Lan-hao, RUI Kai-tian, LIU Xun-nan. A fast linear contact detection algorithm for discrete particles of arbitrary sizes [J]. Rock and Soil Mechanics, 2019, 40(3): 1187-1196.
[5] ZHANG Cheng-gong, YIN Zhen-yu, WU Ze-xiang, JIN Yin-fu, . Three-dimensional discrete element simulation of influence of particle shape on granular column collapse [J]. Rock and Soil Mechanics, 2019, 40(3): 1197-1203.
[6] GU Xiao-qiang, YANG Shuo-cheng, . Numerical investigation on the elastic properties of granular soils by discrete element method [J]. Rock and Soil Mechanics, 2019, 40(2): 785-791.
[7] XIAO Si-you, SU Li-jun, JIANG Yuan-jun, LI Cheng, LIU Zhen-yu, . Influence of slope angle on mechanical properties of dry granular flow impacting vertical retaining wall [J]. Rock and Soil Mechanics, 2019, 40(11): 4341-4351.
[8] JING Lu, KWOK Chung-yee, ZHAO Tao, . Understanding dynamics of submarine landslide with coupled CFD-DEM [J]. Rock and Soil Mechanics, 2019, 40(1): 388-394.
[9] SHEN Hai-meng, LI Qi, LI Xia-ying, MA Jian-li, . Laboratory experiment and numerical simulation on brittle failure characteristics of Longmaxi formation shale in Southern Sichuan under different stress conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 254-262.
[10] ZHAO Ting-ting, FENG Yun-tian, WANG Ming, WANG Yong,. Modified Greenwood-Williamson model based stochastic discrete element method for contact with surface roughness [J]. , 2018, 39(9): 3440-3452.
[11] LIU Xun-nan, ZHAO Lan-hao, MAO Jia, XU Dong,. Discrete element method using three dimensional distance potential [J]. , 2018, 39(7): 2639-2650.
[12] ZHOU Xing-tao, SHENG Qian, CUI Zhen, LEN Xian-lun, FU Xiao-dong, MA Ya-li-na, . Dynamic artificial boundary setting methods for particle discrete element method [J]. , 2018, 39(7): 2671-2680.
[13] HU Wei-zhe, XIE Ling-zhi, CEN Wang-lai, YING Shi, LUO Yun-chuan, ZHAO Peng,. Mechanical characteristics of salt rock based on mesoscopic tests and discrete element method [J]. , 2018, 39(6): 2073-2081.
[14] LIU Yang, LI Shuang. Numerical simulation and analysis of meso-mechanical structure characteristic at critical state for granular media [J]. , 2018, 39(6): 2237-248.
[15] CUI Zhen, SHENG Qian, LENG Xian-lun, LUO Qing-zi,. Control effect of large geological discontinuity on seismic response and stability of underground rock caverns [J]. , 2018, 39(5): 1811-1824.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Guang-ming, LIU He, ZHANG Jin, WU Heng-an, WANG Xiu-xi. Mathematical model and nonlinear finite element equation for reservoir fluid-solid coupling[J]. , 2010, 31(5): 1657 -1662 .
[2] LIN Hang,CAO Ping,LI Jiang-teng,JIANG Xue-liang,HE Zhong-ming. Deformation stability of three-dimensional slope based on Hoek-Brown criterion[J]. , 2010, 31(11): 3656 -3660 .
[3] LI Jun-cai,JI Guang-qiang,SONG Gui-hua,ZHANG Qiong,WANG Zhi-liang,YAN Xiao-min. In-situ measurement and analysis of sparse pile-raft foundation of high-rise building[J]. , 2009, 30(4): 1018 -1022 .
[4] WEI Ning,LI Xiao-chun,WANG Yan,GU Zhi-meng. Resources quantity and utilization prospect of methane in municipal solid waste landfills[J]. , 2009, 30(6): 1687 -1692 .
[5] NIU Wen-jie,YE Wei-min,LIU Shao-gang,YU Hai-tao. Limit analysis of a soil slope considering saturated-unsaturated seepage[J]. , 2009, 30(8): 2477 -2482 .
[6] YIN Hong-lei,XU Qian-jun,LI Zhong-kui. Effect of swelling deformation on stability of expansive soil slope[J]. , 2009, 30(8): 2506 -2510 .
[7] WANG Ke-liang, LIU Ling, SUI Tong-bo , XU Yun-hai, HU Ting-zheng. Experiment research on anti-shear(cut)performance of dam bedrock-rubber powder modified concrete in-situ[J]. , 2011, 32(3): 753 -756 .
[8] LIN Da-ming1,2,SHANG Yan-jun1,SUN Fu-jun3,SUN Yuan-chun1,2,WU Feng-bo1,2,LIU Zhi. Study of strength assessment of rock mass and application[J]. , 2011, 32(3): 837 -842 .
[9] WU Jian,FENG Shao-kong,LI Hong-jie. Study of automatically extracting structural plane parameters from borehole images[J]. , 2011, 32(3): 951 -957 .
[10] LI Hui , YAN E-chuan , YANG Jian-guo , Lü Kun . Study of interaction of landslide mass and retaining wall under condition of reservoir water[J]. , 2012, 33(5): 1593 -1600 .