›› 2011, Vol. 32 ›› Issue (9): 2785-2790.

• Geotechnical Engineering • Previous Articles     Next Articles

Spatial prediction and evaluation of collapse of covered karst

LIU Xiu-min,CHEN Cong-xin,SHEN Qiang,CHEN Jian-sheng   

  1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2010-01-20 Online:2011-09-10 Published:2011-09-13

Abstract: A typical geological model considering soil cover thickness, geological material types for the most harmful covered karst is established. The karst collapse mechanism is analyzed under groundwater fluctuating and rainfall infiltration based on this model. Furthermore, a comprehensive method for karst collapse spatial prediction that involves physical detection, engineering investigation, geological material physical mechanics experiment, numerical simulation and monitor evaluation is proposed and applied to evaluating a karst disaster area in Huangshi, Hubei province. The numerical simulation, which is based on physical detection, engineering investigation and laboratory test of rock and soil, shows that the ground settlement due to softened clay cover caused by rain permeation is larger than that induced by groundwater fluctuating. With reference to the developing tendency of building fissures and ground cracks, the spatial extent of the karst collapse area is distinguished. It is shown that this karst collapse spatial forecast method is feasible; and the prediction results are in good agreement with observations. Therefore, this method can be popularized as a general method for karst collapse prediction in similar engineering.

Key words: covered karst, collapse mechanism, prediction of collapse, comprehensive method

CLC Number: 

  • TV 223.3+3
[1] YU Li, LÜ Cheng, DUAN Ru-yu, WANG Ming-nian, . Upper bound limit analysis of three-dimensional collapse mechanism of shallow buried soil tunnel under pore pressure based on nonlinear Mohr-Coulomb criterion [J]. Rock and Soil Mechanics, 2020, 41(1): 194-204.
[2] YANG Bao-quan ,CHEN Yuan ,ZHANG Lin ,DONG Jian-hua ,CHEN Jian-ye , . Research on dam abutment reinforcement effect of Jinping arch dam based on geomechanical model test [J]. , 2015, 36(3): 819-826.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] REN Song, JIANG De-yi, YANG Chun-he, TENG Hong-wei. Creep tests on shale of cracking position in Gonghe tunnel and simulating it by DEM[J]. , 2010, 31(2): 416 -421 .
[2] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[3] LI Rong-tao. A coupled chemoplastic-damage constitutive model for plain concrete subjected to high temperature[J]. , 2010, 31(5): 1585 -1591 .
[4] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[5] GAO Zhi-hua,LAI Yuan-ming,XIONG Er-gang,LI Bo. Experimental study of characteristics of warm and ice-rich frozen clay under cyclic loading[J]. , 2010, 31(6): 1744 -1751 .
[6] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[7] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[8] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[9] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[10] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .